98%
921
2 minutes
20
In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5-20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) specific surface area analysis, and UV-visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-FeO and γ-FeO), particle size distribution (5-20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 m g for MG-9 and 207 m g for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g L due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-FeO gives a possibility for an easy separation of the catalyst particles after their use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-9566-4 | DOI Listing |
Chem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFChembiochem
September 2025
Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
Mechanoglycobiology has emerged as a rapidly expanding interdisciplinary field that involves chemistry, biology, and engineering. Despite the great advancements in this field, in-depth investigation of mechanoglycobiology remains challenging due to the complex nature of glycans and cell glycocalyx, as well as the difficulty to mechanically target these biomolecules. To address the issues, novel methods and models have been established to facilitate the investigation of glycan-mediated mechanosensing and mechanotransduction.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
School of Physics, Engineering & Technology, University of York, York, UK.
Microscopic swimmers, such as bacteria and archaea, are paradigmatic examples of active matter systems. The study of these systems has given rise to novel concepts such as rectification of bacterial swimmers, in which microstructures can passively separate swimmers from non-swimming, inert particles. Many bacteria and archaea swim using rotary molecular motors to drive helical propellers called flagella or archaella.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
D-BAUG, ETH Zurich, Zürich 8093, Switzerland.
Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.
View Article and Find Full Text PDF