Monitoring Effector Translocation using the TEM-1 Beta-Lactamase Reporter System.

Methods Mol Biol

CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69100, Villeurbanne, France.

Published: March 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among the bacterial secretion systems, the Type III, IV, and VI secretion systems enable bacteria to secrete proteins directly into a target cell. This specific form of secretion, referred to as translocation, is essential for a number of pathogens to alter or kill targeted cells. The translocated proteins, called effector proteins, can directly interfere with the normal processes of the targeted cells, preventing elimination of pathogens and promoting their multiplication. The function of effector proteins varies greatly depending on the considered pathogen and the targeted cell. In addition, there is often no magic bullet, and the number of effector proteins can range from a handful to hundreds, with, for instance, a substrate of over 300 effector proteins of the Icm/Dot Type IV secretion system in the human pathogen Legionella pneumophila. Identifying, detecting, and monitoring the translocation of each of the effector proteins represents an active field of research and is key to understanding the bacterial molecular weaponry. Translational fusion of an effector with a reporter protein of known activity remains the best method to monitor effector translocation. The development of a fluorescent substrate for the TEM-1 beta-lactamase has turned this antibiotic-resistant protein into a highly versatile reporter system for investigating protein transfer events associated with microbial infection of host cells. Here we describe a simple protocol to assay the translocation of an effector protein by the Icm/Dot system of the human pathogen Legionella pneumophila.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7033-9_34DOI Listing

Publication Analysis

Top Keywords

effector proteins
20
effector translocation
8
tem-1 beta-lactamase
8
reporter system
8
secretion systems
8
proteins directly
8
targeted cells
8
effector
8
system human
8
human pathogen
8

Similar Publications

G protein-coupled receptors (GPCRs) engage multiple transducers to regulate distinct physiological processes. These transducers include various G proteins subtypes, GPCR kinases (GRKs), and β-arrestins. In addition to promoting receptor desensitization, β-arrestins serve as scaffolds for signaling via non-G protein pathways.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Assessing the phagocytosis of microbes by macrophages is an important component of studies of novel immunotherapeutics, antimicrobial drugs, immune effectors, or any immunology related research. Here we define two protocols for measuring in vitro phagocytosis by RAW 246.7 cells - a photographic phagocytosis assay that allows optical measurement of bacterial cells inside of the RAW 246.

View Article and Find Full Text PDF

Human YKL-40 antibody alleviates atopic dermatitis-like skin inflammation by inhibiting exosome secretion via the JAK3/STAT6 pathway.

Arch Pharm Res

September 2025

College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.

Atopic dermatitis (AD) is an inflammatory skin disease that produces a variety of inflammatory cytokines and chemokines. Chitinase-3-like protein 1 (CHI3L1, YKL-40) significantly contributes to AD-associated inflammatory response and is highly expressed in patients with AD. Therefore, this study elucidated the effects and potential mechanisms of human YKL-40 antibody on AD-affected skin.

View Article and Find Full Text PDF

Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.

View Article and Find Full Text PDF