Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A palladium-catalyzed tandem oxidative annulation of primary benzamides with acrylates via intermolecular N-alkenylation followed by intramolecular C-alkenylation yielded a stereoselective synthesis of (E)-3-methyleneisoindolin-1-ones. The study unveils, for the first time, that only E-enamides could undergo intramolecular oxidative cyclization under the optimized conditions to give isoindolinones. The current strategy represents an umpolung strategy when compared to the literature approaches that use benzamides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b00966DOI Listing

Publication Analysis

Top Keywords

intramolecular oxidative
8
oxidative cyclization
8
annulation primary
8
primary benzamides
8
benzamides acrylates
8
geometry driven
4
driven intramolecular
4
cyclization enamides
4
enamides umpolung
4
umpolung annulation
4

Similar Publications

We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').

View Article and Find Full Text PDF

In this study, we seek to deepen the understanding of the Fe effect in Ni-oxyhydroxide-mediated oxygen evolution reaction (OER) electrocatalysis in alkaline conditions, where extremely small amounts of Fe can have a dramatic impact on catalytic performance. For this purpose, Density Functional Theory (DFT) electronic structure calculations with implicit solvation description is employed in a constant pH/potential simulation framework. Nanoparticle models are considered for the nickel-based oxyhydroxide material with different degrees of Fe incorporation, and the pH/U-dependent interface structure is studied.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Nitrogenase accumulates reducing equivalents in hydrides and couples H elimination to the reductive binding of N at a di-iron edge of its FeMo cofactor (FeMoco). Here, we describe that oxidation of a pyrazolato-based dinickel(II) dihydride complex K[L(Ni-H)] (), either electrochemically or chemically using H or ferrocenium, triggers H elimination and binding of N in a constrained and extremely bent bridging mode in [LNi(μ-N)] (). Spectroscopic and computational evidence indicate that the electronic structure of is best described as Ni-(N)-Ni, with a rare 1e reduced and significantly activated N substrate ( = 1894 cm).

View Article and Find Full Text PDF

"Silatranization": Surface modification with silatrane coupling agents.

Adv Colloid Interface Sci

August 2025

Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Cracow, Poland; Photo4Chem, Lea 114, 30-133 Cracow, Poland; Photo HiTech Ltd., Bobrzyskiego 14, 30-348 Cracow, Poland. Electronic address: joanna

Silatranization, a specialized variant of silanization using silatrane compounds, is emerging as a powerful strategy to functionalize material surfaces. Compared to conventional silane coupling agents, silatranes exhibit remarkable hydrolytic stability and enhanced resistance to self-condensation, enabling controllable, water-independent formation of a polysiloxane self-assembled monolayer. This review critically examines the unique structure of silatranyl cages, emphasizing how the intramolecular N->Si bond and chelate effect modulate the silicon center's reactivity toward hydroxyl-decorated surfaces.

View Article and Find Full Text PDF