Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ∼20% of its mass detected as gas-phase CO, CO, and HO. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b00160DOI Listing

Publication Analysis

Top Keywords

thermal desorption
16
thermal decomposition
12
volatility distributions
12
mass spectrometer
8
elemental formulas
8
thermogram method
8
thermal
7
impact thermal
4
decomposition thermal
4
desorption
4

Similar Publications

Combination of Si@UiO-66-NH paper-based thin film microextraction with direct solid-state spectrofluorimetry for extraction and determination of estradiol in urine.

Anal Chim Acta

November 2025

Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran. Electronic address:

Background: Determination of the estradiol hormone in urine is crucial for evaluating congenital adrenal hyperplasia, certain hormone-producing ovarian tumors, polycystic ovary syndrome, liver disease, pregnancy, and infertility. On the other hand, steroid hormones can have destructive effects on the environment, animals, and the endocrine system of humans. Consequently, accurately measuring this hormone's concentration in trace amounts is essential for environmental safety and human health.

View Article and Find Full Text PDF

Fe-X (X=C, P, S) atom pair-decorated g-CN monolayers for sensing toxic thermal runaway gases in lithium-ion batteries: A DFT Study.

Environ Res

September 2025

Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials,Jiangxi University of Science and Technology, Ganzhou 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China. Electronic address:

The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X=C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations.

View Article and Find Full Text PDF

Karst regions face severe water scarcity due to rapid hydrological leakage and complex geological structures. To address this challenge, this study developed a bioinspired porous condensation material by integrating sand-based substrates with optimized hydrophilic-hydrophobic properties and aluminum fiber modifications. Through orthogonal experiments, the optimal formulation (0.

View Article and Find Full Text PDF

With the widespread application of lithium batteries in energy storage systems, their safety concerns have attracted increasing attention. Electrolyte leakage, as one of the primary safety hazards, necessitates highly sensitive and rapid detection technologies for early warning. Addressing the limitations of conventional methods (e.

View Article and Find Full Text PDF

Adsorption and Thermal Stability of Phenylphosphonic Acid on Cerium Oxides.

J Phys Chem C Nanomater Interfaces

August 2025

Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 18000, Czech Republic.

This paper reports on a study of the adsorption and thermal stability of phenylphosphonic acid (PPA) adsorbed by physical vapor deposition on the surfaces of epitaxial cerium oxide films of different structure, stoichiometry and composition. Advanced analytical methods based on photoelectron spectroscopy combined with DFT calculations showed that the binding of PPA to cerium oxide is through the phosphonate group, while the decomposition temperature is defined by the nature of the oxide. Tridentate PPA species are present on all substrates (CeO, CeO, CeO, and CeWO), indicating a strong affinity of PPA for cerium oxide.

View Article and Find Full Text PDF