98%
921
2 minutes
20
When fixating on a stationary object, the power of the eye's lens fluctuates. Studies have suggested that changes in these so-called microfluctuations in accommodation may be a factor in the onset and progression of short-sightedness. Like many physiological signals, the fluctuations in the power of the lens exhibit chaotic behaviour. A breakdown or reduction in chaos in physiological systems indicates stress to the system or pathology. The purpose of this study was to determine whether the chaos in fluctuations of the power of the lens changes with refractive error, i.e. how short-sighted a subject is, and/or accommodative demand, i.e. the effective distance of the object that is being viewed. Six emmetropes (EMMs, non-short-sighted), six early-onset myopes (EOMs, onset of short-sightedness before the age of 15), and six late-onset myopes (LOMs, onset of short-sightedness after the age of 15) took part in the study. Accommodative microfluctuations were measured at 22 Hz using an SRW-5000 autorefractor at accommodative demands of 1 D (dioptres), 2 D, and 3 D. Chaos theory analysis was used to determine the embedding lag, embedding dimension, limit of predictability, and Lyapunov exponent. Topological transitivity was also tested for. For comparison, the power spectrum and standard deviation were calculated for each time record. The EMMs had a statistically significant higher Lyapunov exponent than the LOMs ([Formula: see text] vs. [Formula: see text]) and a lower embedding dimension than the LOMs ([Formula: see text] vs. [Formula: see text]). There was insufficient evidence (non-significant p value) of a difference between EOMs and EMMs or EOMs and LOMs. The majority of time records were topologically transitive. There was insufficient evidence of accommodative demand having an effect. Power spectrum analysis and assessment of the standard deviation of the fluctuations failed to discern differences based on refractive error. Chaos differences in accommodation microfluctuations indicate that the control system for LOMs is under stress in comparison to EMMs. Chaos theory analysis is a more sensitive marker of changes in accommodation microfluctuations than traditional analysis methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517597 | PMC |
http://dx.doi.org/10.1007/s11538-017-0310-5 | DOI Listing |
J R Soc Interface
September 2025
UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK.
Severe fever with thrombocytopaenia syndrome virus (SFTSV) was identified by the World Health Organization as a priority pathogen due to its high case-fatality rate in humans and rapid spread. It is maintained in nature through three transmission pathways: systemic, non-systemic and transovarial. Understanding the relative contributions of these transmission pathways is crucial for developing evidence-informed public health interventions to reduce its spillover risks to humans.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan.
This study introduces the Wrapped Epanechnikov Exponential Distribution (WEED), a novel circular distribution derived from the Epanechnikov exponential distribution. The probability density function and cumulative distribution function are presented, together with a comprehensive analysis of its properties and parameters, including the characteristic function and trigonometric moments. Parameters are estimated using maximum likelihood estimation (MLE).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Bioengineering, Stanford University, Stanford, CA 94305.
Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.
View Article and Find Full Text PDFMol Pharm
September 2025
Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.
Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.
View Article and Find Full Text PDF