Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Even though various molecules may serve as biomarkers, little is known concerning the mechanisms underlying the carcinogenesis of ESCC, particularly the transcriptional regulatory network. Thus, in the present study, paired ESCC and non-cancerous (NC) tissues were assayed by Affymetrix microarray assays. Passing Attributes between Networks for Data Assimilation (PANDA) was used to construct networks between transcription factors (TFs) and their targets. AnaPANDA program was applied to compare the regulatory networks. A hypergeometric distribution model-based target profile similarity analysis was utilized to find co-activation effects using both TF-target networks and differential expression data. There were 1,116 genes upregulated and 1,301 genes downregulated in ESCC compared with NC tissues. In TF-target networks, 16,970 ESCC-specific edges and 9,307 NC-specific edges were identified. Edge enrichment analysis by AnaPANDA indicated 17 transcription factors (NFE2L2, ELK4, PAX6, TLX1, ESR1, ZNF143, TP53, REL, ELF5, STAT1, TBP, NHLH1, FOXL1, SOX9, STAT3, ELK1, and HOXA5) suppressed in ESCC and 5 (SPIB, BRCA1, MZF1, MAFG and NFE2L1) activated in ESCC. For SPIB, MZF1, MAFG and NFE2L1, a strong and significant co-activation effect among them was detected in ESCC. In conclusion, the construction of transcriptional regulatory networks found SPIB, MZF1, MAFG and NFE2L1 co-activated in ESCC, which provides distinctive insight into the carcinogenesis mechanism of ESCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2017.5681 | DOI Listing |