98%
921
2 minutes
20
The controlled creation of defect centre-nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458551 | PMC |
http://dx.doi.org/10.1038/ncomms15376 | DOI Listing |
Front Vet Sci
August 2025
Fish Research Centre, Faculty of Environmental Agricultural Sciences, Arish University, El Arish, Egypt.
The well-known technique of microtomy, which is an essential cutting tool, was first developed for light and transmission electron microscope uses, but it is currently also utilized to prepare specimens for atomic force microscopy (AFM), ion microscopy using a focused ion beam (FIB), and scanning electron microscopy (SEM). Ultramicrotomy can only be used on soft substances and metals that are sufficiently ductile to be cut with a diamond knife. Before being sliced by a microtome, many soft materials must first go through numerous preparatory processes.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.
View Article and Find Full Text PDFMicrob Cell Fact
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31257, Egypt.
Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.
Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.
Naturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFInorg Chem
September 2025
College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong 266071, P. R. China.
Molecular piezoelectrics have garnered significant attention in energy harvesting and sensing fields due to their high intrinsic piezoelectricity, low elastic properties, and excellent solution processability. Recent efforts have primarily focused on rationally tuning the piezoelectric performance of these materials through the molecular predesign of organic components. However, the regulation of piezoelectric properties via the central metal ion has remained relatively underexplored.
View Article and Find Full Text PDF