A SIMPLE Pipeline for Mapping Point Mutations.

Plant Physiol

Department of Biology, Duke University, Durham, North Carolina 27708

Published: July 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A forward genetic screen is one of the best methods for revealing the function of genes. In plants, this technique is highly efficient, as it is relatively easy to grow and screen hundreds or thousands of individuals. The cost efficiency and ease of data production afforded by next-generation sequencing have created new opportunities for rapid mapping of induced mutations. Current mapping tools are often not user friendly, are complicated, or require extensive preparation steps. To simplify the process of mapping new mutations, we developed a pipeline that takes next-generation sequencing fastq files as input, calls on several well-established and freely available genome-analysis tools, and outputs the most likely causal DNA changes. The pipeline has been validated in (Arabidopsis) and can be readily applied to other species, with the possibility of mapping either dominant or recessive mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490893PMC
http://dx.doi.org/10.1104/pp.17.00415DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
mapping
5
simple pipeline
4
pipeline mapping
4
mapping point
4
mutations
4
point mutations
4
mutations forward
4
forward genetic
4
genetic screen
4

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.

NPJ Biofilms Microbiomes

September 2025

Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.

Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.

View Article and Find Full Text PDF

Severe pneumonia, as a critical and prevalent condition of the respiratory system, poses a significant threat to patient survival and health outcomes. This article focuses on the similarities and differences between community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP). There is significant divergence in the predominant pathogens between severe community-acquired pneumonia (SCAP) and HAP/VAP.

View Article and Find Full Text PDF

Gut microbiome and rheumatoid arthritis: Revisiting the gut-joint axis.

Int Immunopharmacol

September 2025

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.

Over the past few decades, the scientific perspective on gut microbiota has undergone a profound transformation, particularly with the emergence and advancement of microbiome research. Next-generation sequencing technologies have emerged as a foundational tool in microbiome research, facilitating comprehensive characterization of microbial communities across diverse sample types and ecological niches. Significant alterations in gut microbiota composition have been observed in disease states compared to healthy individuals, suggesting a direct association between gut dysbiosis and host health status.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the prognostic value of metagenomic next-generation sequencing(mNGS) using Nanopore sequencing technology (NST) versus traditional culture methods in infectious disease cases.

Methods: We conducted a retrospective, single-center observational study comparing clinical outcomes between patients and specimen types in NST group and those in culture-based control group. Cox Proportional Hazards regression and Kaplan-Meier survival analysis were conducted to evaluate the association between diagnostic strategy and 28-day mortality.

View Article and Find Full Text PDF