Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

PrP, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrP, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrP functions as a powerful toxicity-transducing effector whose activity is tightly regulated by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain. Anti-PrP antibodies targeting epitopes in the C-terminal domain induce currents, and cause degeneration of dendrites on murine hippocampal neurons, effects that entirely dependent on the effector function of the N-terminus. NMR experiments demonstrate intramolecular docking between N- and C-terminal domains of PrP, revealing a novel auto-inhibitory mechanism that regulates the functional activity of PrP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469617PMC
http://dx.doi.org/10.7554/eLife.23473DOI Listing

Publication Analysis

Top Keywords

n-terminal domain
12
c-terminal domain
12
prion protein
8
prp
6
domain
6
n-terminus prion
4
protein toxic
4
toxic effector
4
effector regulated
4
regulated c-terminus
4

Similar Publications

Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.

View Article and Find Full Text PDF

Discovery and phylogeny of a ricin-B-like domain from rice.

Carbohydr Res

September 2025

Laboratory for Biochemistry & Glycobiology, Ghent University, Department of Biotechnology, Ghent, Belgium. Electronic address:

Lectins are carbohydrate-binding proteins which play key roles in various biological processes, including cell signaling, pathogen recognition and development. Previous research conducted on ricin-B lectin domains and carbohydrate-binding modules of family 13 (CBM13) illustrated the striking resemblances between these two groups of protein domains. In this study, we report on the discovery, identification and putative biochemical characteristics of a ricin-B-like domain that is unique for GH27 enzymes from land plants, identified in the OsAPSE enzyme from Japanese rice (Oryza sativa L.

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF

Dipeptidyl-peptidase (DPP)-IV inhibition by penultimate N-terminus Pro-containing peptides is a promising strategy for Type 2 diabetes (T2D) management, as it prevents the degradation of incretin hormones (DPP-IV substrates) like glucagon-like peptide-1 (GLP-1), thereby prolonging their half-life. However, the stability and bio-accessibility of these peptides are crucial to their efficacy in orally administered therapeutics. We previously identified LPCL and TPFLPDE peptides from tilapia viscera by-products hydrolysates, which exhibited significant DPP-IV inhibition in vitro and in situ while effectively preserving active GLP-1 levels after 2 h treatment in STC-1 cells under basal glucose conditions.

View Article and Find Full Text PDF