98%
921
2 minutes
20
Background: The merging of genomes in inter-specific hybrids can result in novel phenotypes, including increased growth rate and biomass yield, a phenomenon known as heterosis. Heterosis is typically viewed as the opposite of hybrid incompatibility. In this view, the superior performance of the hybrid is attributed to heterozygote combinations that compensate for deleterious mutations accumulating in each individual genome, or lead to new, over-dominating interactions with improved performance. Still, only fragmented knowledge is available on genes and processes contributing to heterosis.
Results: We describe a budding yeast hybrid that grows faster than both its parents under different environments. Phenotypically, the hybrid progresses more rapidly through cell cycle checkpoints, relieves the repression of respiration in fast growing conditions, does not slow down its growth when presented with ethanol stress, and shows increased signs of DNA damage. A systematic genetic screen identified hundreds of S. cerevisiae alleles whose deletion reduced growth of the hybrid. These growth-affecting alleles were condition-dependent, and differed greatly from alleles that reduced the growth of the S. cerevisiae parent.
Conclusions: Our results define a budding yeast hybrid that is perturbed in multiple regulatory processes but still shows a clear growth heterosis. We propose that heterosis results from incompatibilities that perturb regulatory mechanisms, which evolved to protect cells against damage or prepare them for future challenges by limiting cell growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426048 | PMC |
http://dx.doi.org/10.1186/s12915-017-0373-7 | DOI Listing |
J Med Microbiol
September 2025
Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan.
Biofilms are a primary form of device-associated infections and typically exhibit high tolerance to antimicrobial agents. In biofilms formed by multiple microbial species, microorganisms may show even greater tolerance, complicating treatment. There is evidence that meropenem (MEPM) tolerance in is increased in dual-species biofilms with , and effective treatments have not been established.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, United States.
Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Genetics, Comenius University Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15 Bratislava, Slovakia.
Poly (ADP-ribose) polymerases (PARPs) are enzymes catalyzing the post-translational addition of chains of ADP-ribose moieties to proteins. In most eukaryotic cells, their primary protein targets are involved in DNA recombination, repair, and chromosome maintenance. Even though this group of enzymes is quite common in both eukaryotes and prokaryotes, no PARP homologs have been described so far in ascomycetous yeasts, leaving their potential roles in this group of organisms unexplored.
View Article and Find Full Text PDFDrug Des Devel Ther
September 2025
Mardin Artuklu University, Kızıltepe Faculty of Agricultural Sciences and Technologies, Department of Field Crops, Mardin, Artuklu, 47200, Türkiye.
Objective: This study was conducted to determine and compare the antioxidant, cytotoxic, and antimicrobial effects of spindle leaves of L. () (oleaster) leaves.
Methods: Total phenolic content was measured using the Folin-Ciocalteu method, phenolic compound analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and antimicrobial effect by the minimum inhibition concentration (MIC) method.
Food Res Int
November 2025
College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR Chi
Patulin (PAT), a mycotoxin primarily produced by Penicillium species, presents a serious food safety challenge due to its widespread occurrence and harmful health effects. Among current detoxification approaches, yeast-based degradation is particularly promising, offering high efficiency, environmental sustainability, and preservation of food quality-key attributes for industrial application. However, the enzymatic pathways involved and the potential for concurrent quality enhancement remain poorly understood.
View Article and Find Full Text PDF