Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeting the biosynthetic pathway of neuroactive steroids with specific 18 kDa translocator protein (TSPO) ligands may be a viable therapeutic approach for a variety of neurodegenerative and neuropsychiatric diseases. However, the lack of correlation between binding affinity and in vitro steroidogenic efficacy has limited the identification of lead compounds by traditional affinity-based drug discovery strategies. Our recent research indicates that the key factor for robust steroidogenic TSPO ligand efficacy is not the binding affinity per se, but rather the time the compound spends in the target, namely its residence time (RT). The assessment of this kinetic parameter during the in vitro characterization of compounds appears mandatory in order to obtain structure-efficacy relationships suitable for the future development of novel molecules with promising pharmacological properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201700220DOI Listing

Publication Analysis

Top Keywords

residence time
8
translocator protein
8
protein tspo
8
tspo ligands
8
binding affinity
8
time parameter
4
parameter predict
4
predict neurosteroidogenic
4
neurosteroidogenic efficacy
4
efficacy translocator
4

Similar Publications

Migration is widespread among animals but varies in its manifestation with differences in direction, distance and obligatory nature. Understanding the evolution of migration requires insight into not only the development of this behaviour but also the loss of it. Partial migration, where some individuals within a population migrate while others stay, provides a unique opportunity to identify the proximate factors determining migratory/resident behaviours.

View Article and Find Full Text PDF

Generative AI in perioperative medicine and anesthesiology: ethical integration, educational innovation, and the future of clinical professionalism.

J Anesth

September 2025

Community Medicine Education Promotion Office, Faculty of Medicine, Kagawa University Ikenobe, 1750-1, Miki-Cho, Kagawa, 761-0793, Japan.

Generative artificial intelligence (AI) is rapidly transforming perioperative medicine, particularly anesthesiology, by enabling novel applications, such as real-time data synthesis, individualized risk prediction, and automated documentation. These capabilities enhance clinical decision-making, patient communication, and workflow efficiency in the operating room. In education, generative AI offers immersive simulations and tailored learning experiences that improve both technical skills and professional judgment.

View Article and Find Full Text PDF

Metagenomic complexity of high, seasonal transmission of Plasmodium spp. in asymptomatic carriers in Northern Sahelian Ghana.

Commun Med (Lond)

September 2025

Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.

Background: Mixed-species, mixed-strain plasmodia infections are known to occur in humans in malaria endemic areas. It may be surprising that to date, the extent of this complexity has not been systematically explored in high-burden countries of sub-Saharan Africa, especially in the reservoir of asymptomatic infections in all ages, which sustains transmission.

Methods: Here we take a metagenomic lens to these infections by sampling variable blood volumes from 188 afebrile residents living in high, seasonal transmission in Northern Sahelian Ghana.

View Article and Find Full Text PDF

Polysaccharides encounter significant challenges in vivo pharmacokinetic studies because of their complex structures and the limitations of current detection methods, thereby impeding their development and biomedical applications. This study systematically investigated the oral absorption characteristics and tissue distribution of ME-2, a homogeneous polysaccharide from Auricularia auricula-judae, using a dual-labeling pharmacokinetic approach. First, a fluorescein-5-thiosemicarbazide (FTSC)-based quantitative method was established to analyze plasma pharmacokinetics and tissue concentrations of ME-2, demonstrating robust methodological stability (intra-/inter-day RSD < 15 %) and accuracy (recovery rate 95-103 %).

View Article and Find Full Text PDF

Biorelevant simulation of GI variability and its impact on the release behavior of non-disintegrating formulations: A case study using DHSI-IV (NERDT) system as a novel in vitro tool.

Int J Pharm

September 2025

Life Quality (LQ) Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China. Electronic address:

Gastrointestinal (GI) physiological variability significantly influences dissolution and bioavailability of non-disintegrating solid drug systems. This study employed the dynamic human stomach-intestine (DHSI-IV, branded as NERDT) system to characterize how gastric emptying kinetics and intestinal environmental dynamics affect drug release, using extended-release metformin matrix tablets (Glucophage XR®) and metformin osmotic pump tablets (Nida®) as model formulations. The DHSI-IV (NERDT) system accurately simulated three fasting-state gastric emptying profiles (30-120 min complete emptying) with excellent fit to the modified Elashoff model (R = 0.

View Article and Find Full Text PDF