98%
921
2 minutes
20
Chemical penetration enhancers (CPEs) have long been used for mass transport enhancement across membranes. Many CPEs are used in a solution or gel and could be a solvent. The use of CPEs is mainly limited due to their toxicity/irritation levels. This study presents the evaluation of encapsulated CPEs in nano-sized polymeric particles on the chorioamnion (CA) membrane mass transport. CPEs' mass encapsulated in nanoparticles was decreased by 10,000-fold. Interestingly, this approach resulted in a 6-fold increase in mass transport across the CA. This approach may also be used with other CPEs' base applications necessitating lower CPE concentration. Applying Ultrasound (US) has shown to increase the release rate of and also the mass transport across the CA membrane. It is proposed that encapsulated CPEs penetrate into the CA membrane thus prolonging their exposure, possibly extending their penetration into the CA membrane, while insonation also deepens their penetration into the CA membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2017.04.031 | DOI Listing |
Arch Environ Contam Toxicol
September 2025
Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Mahallesi Mimar Sinan Bulvarı Eflak Caddesi No:177, 16310, Yıldırım, Bursa, Turkey.
This study investigates airborne concentrations of six insecticides widely used on crops grown in agricultural, semi-urban, and rural areas of Bursa Province, Türkiye. Sorbent-impregnated passive air samplers (SIP-PASs), consisting of polyurethane foam (PUF) disks impregnated with XAD-2 resin, were deployed at ten strategically selected sites representing diverse agricultural and demographic profiles within the province. Analytes were quantified using gas chromatography-mass spectrometry (GC-MS) for depuration compounds and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for target insecticides.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.
An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.
View Article and Find Full Text PDFChem Rev
September 2025
Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, P. R. China.
Diffusion is a fundamental process in the transfer of mass and energy. Diffusion metamaterials, a class of engineered materials with distinctive properties, enable precise control and manipulation of diffusion processes. Meanwhile, topology, a branch of mathematics, has attracted growing interest within the condensed matter physics community.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDF