98%
921
2 minutes
20
Nuruk is a fermenting starter that is involved in the production of alcoholic beverages, and has been used in South Korea for a very long time. To analyze the fungal diversity, we collected a total of 59 nuruk samples from several companies and persons in 2013 to 2014, and obtained 364 isolates. All of the single isolated fungi were identified, both morphologically and molecularly, based on the sequences of ribosomal RNA gene [18S, ITS1-5.8S-ITS2, and 26S (D1/D2 region)]. In 46 nuruk samples out of 59 (78%), Saccharomycopsis fibuligera, a dimorphic yeast, was most frequently isolated. Among the filamentous fungi, Aspergillus and Lichtheimia were found in more than 50% of the samples with lower colony forming unit (CFU/g of sample) than those of yeasts. The yeasts S. fibuligera and Wickerhamomyces anomalus were counted with maximum 1.3-1.8 × 10 CFU/g. Among Mucorales fungi, Lichtheimia and Mucor were isolated in much higher numbers than Rhizopus and Rhizomucor. Overall, the home-made nuruks tend to contain more diverse filamentous fungi than the commercial nuruks. To acquire industrially useful filamentous fungi and yeasts, we analyzed the enzyme activities of α-amylase, glucoamylase and acid protease associated with brewing properties for 131 strains. Aspergillus oryzae and S. fibuligera had high α- and glucoamylase activities and most isolates of Lichtheimia ramosa had high acid protease activity. For further applications, 27 fungal strains were chosen based on isolation frequencies from nuruk, and the ability to produce useful enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-017-7114-z | DOI Listing |
Mycorrhiza
September 2025
Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China.
The emergence of severe resistance issues in plant pathogenic fungi poses a significant threat to the global quality and safety of crops. In this study, 36 novel derivatives featuring a 5,6,7,8-tetrahydroquinazolin structure were designed and synthesized for the first time. These 36 target compounds were subjected to tests against five fungal species.
View Article and Find Full Text PDFPhytopathology
September 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
The human fungal pathogen changes its morphology in response to temperature. At 37°C, it grows as a budding yeast, whereas at room temperature (RT), it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors (TFs) Ryp1-4 are necessary to establish yeast growth.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
Aerosol sampling with next-generation sequencing was used to characterize microbial communities in a cafeteria and medical facility waiting room in Los Alamos, New Mexico, USA. We detected sequences from human, bacteria, archaea, fungi, other eukaryotes, and viruses, providing insights into the diversity of the aerosol microbiome.
View Article and Find Full Text PDF