Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Patients with ulcerative colitis [UC] are at an increased risk of developing colitis-associated cancer [CAC], suggesting that continuous inflammation in the colon promotes the transformation of colonic epithelial cells. However, the mechanisms underlying cell transformation in UC remain unknown. We therefore aimed to investigate the effect of long-term inflammation on intestinal epithelial cells [IECs] using organoid culture.

Methods: IECs were isolated from mouse colon, and were cultured according to a method for a three-dimensional [3D] organoid culture. To mimic chronic inflammation, a mixture of cytokines and bacterial components were added to the medium for over a year. Cell signal intensity was assessed by 3D immunofluorescence. Cell transformation was assessed by microarray with gene set enrichment analysis.

Results: Stimulation with cytokines resulted in a significant induction of target genes for the nuclear factor [NF]-κB pathway in colonic organoids. Following 60 weeks of continuous stimulation, cell differentiation was suppressed. Continuous stimulation also resulted in significant amplification of NF-κB signalling. Amplified NF-κB signalling by long-term stimulation remained in colonic organoids even 11 weeks after the removal of all cytokines. Some genes were specifically upregulated only in colonic organoids after the removal all cytokines following long-term stimulation.

Conclusions: Colonic organoids stimulated with cytokines for a prolonged period were established as in vitro model to assess long-term epithelial responses to inflammatory cytokines. Chronic inflammation led to sustained NF-κB signalling activation in colonic organoids, resulting in cell transformation that might be related to the carcinogenesis of CAC in UC.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ecco-jcc/jjw186DOI Listing

Publication Analysis

Top Keywords

colonic organoids
24
epithelial cells
12
cell transformation
12
nf-κb signalling
12
long-term inflammation
8
intestinal epithelial
8
chronic inflammation
8
organoids weeks
8
continuous stimulation
8
removal cytokines
8

Similar Publications

Arachidonic acid/Alox15 alleviates the progression of ulcerative colitis by modulating ferroptosis levels.

Biochem Biophys Res Commun

August 2025

Department of General Surgery, Jinling Clinical Medical College, Nanjing Medical University, Nanjing City, Jiangsu Province, China. Electronic address:

Background: Ulcerative colitis (UC) is a long-lasting, nonspecific inflammatory bowel disease involving continuous, diffuse intestinal mucosal injury. The pathogenesis of UC involves genetic polymorphism, oxidative stress, immune response, and microbial infection. Ferroptosis participates in UC progression as a novel non-apoptotic cell death, and its specific mechanism in UC progression deserves further investigation.

View Article and Find Full Text PDF

Chronic gastrointestinal pain is a hallmark of most intestinal pathologies, yet effective treatments remain elusive given the complexity of the underlying mechanisms. Aiming to investigate the intestinal epithelium contribution to visceral pain modulation in dysbiosis context, we first demonstrated that intracolonic instillation of microbe-free fecal supernatants from mice with post-inflammatory dysbiosis induced by dextran sodium sulfate (FS) provokes visceral hypersensitivity in recipient mice. Epithelium involvement in the response to FS was analyzed through a novel approach comprising murine epithelial colon organoids and primary dorsal root ganglia (DRG) neurons.

View Article and Find Full Text PDF

Microtubules are crucial for various cellular processes, including cell division, where they form highly dynamic spindle fibers for chromosomal alignment and segregation. Interference with microtubule dynamics through microtubule targeting agents (MTAs) blocks progression through mitosis, ultimately resulting in apoptosis. Although MTAs have been effectively used as a frontline treatment for various cancers, multidrug resistance (MDR) often limits their effectiveness.

View Article and Find Full Text PDF

Two distinct synthetic pathways are disclosed that lead to new gold-selenolato complexes, stabilized by N-heterocyclic carbenes (NHCs). The weak base route can provide facile access to phenylselenolate complexes of gold, using both NHC and phopshine ligands. In addition, the pathway based on the carbometallation of elemental selenium enables the construction of a more diverse library of products, based on substituted aryl-selenide fragments whose selenol congeners are not commercially available.

View Article and Find Full Text PDF

The goals of this study were to develop a model to study host pathogen interactions in primary human colon cells and to test the hypothesis that toxin (BFT) secreted in outer membrane vesicles (OMVs) modulates mucosal immunity and CFTR Cl secretion. Since Bacteroides species often resides in mucus, OMVs are likely to represent a mechanism of communication between Bacteroides and the host. Two strains of Bacteroides were studied, Enterotoxigenic (ETBF), which produces BFT, and the non-toxigenic strain NCTC 9343 (NTBF) that does not express .

View Article and Find Full Text PDF