98%
921
2 minutes
20
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) may serve as a new assay for drug testing in a human context, but their validity particularly for the evaluation of inotropic drug effects remains unclear. In this blinded analysis, we compared the effects of 10 indicator compounds with known inotropic effects in electrically stimulated (1.5 Hz) hiPSC-CM-derived 3-dimensional engineered heart tissue (EHT) and human atrial trabeculae (hAT). Human EHTs were prepared from iCell hiPSC-CM, hAT obtained at routine heart surgery. Mean intra-batch variation coefficient in baseline force measurement was 17% for EHT and 49% for hAT. The PDE-inhibitor milrinone did not affect EHT contraction force, but increased force in hAT. Citalopram (selective serotonin reuptake inhibitor), nifedipine (LTCC-blocker) and lidocaine (Na+ channel-blocker) had negative inotropic effects on EHT and hAT. Formoterol (beta-2 agonist) had positive lusitropic but no inotropic effect in EHT, and positive clinotropic, lusitropic, and inotropic effects in hAT. Tacrolimus (calcineurin-inhibitor) had a negative inotropic effect in EHTs, but no effect in hAT. Digoxin (Na+-K+-ATPase-inhibitor) showed a positive inotropic effect only in EHTs, but no effect in hAT probably due to short incubation time. Ryanodine (ryanodine receptor-inhibitor) reduced contraction force in both models. Rolipram and acetylsalicylic acid showed noninterpretable results in hAT. Contraction amplitude and kinetics were more stable over time and less variable in hiPSC-EHTs than hAT. HiPSC-EHT faithfully detected cAMP-dependent and -independent positive and negative inotropic effects, but limited beta-2 adrenergic or PDE3 effects, compatible with an immature CM phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837217 | PMC |
http://dx.doi.org/10.1093/toxsci/kfx081 | DOI Listing |
Pflugers Arch
September 2025
Department of Science, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan.
This study investigated the correlation between the strength of correlated effective neural drive (END) to the antagonistic muscles and the fluctuations in neural/electrical and mechanical output around the joint during steady co-contraction, and whether the correlated END strength estimated from conventional surface EMG is correlated with that determined from motor unit (MU) discharges. Fourteen young male participants performed isometric steady co-contractions with their medial gastrocnemius and tibialis anterior muscles at 10% of maximal EMG while sitting. Correlated END strength was quantified as the maximum value of the cross-correlation function between the conventional surface EMG signals and between MU discharges decomposed from high-density surface EMG of each muscle.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2025
Ludwig Engel Centre for Respiratory Research, Westmead Hospital, Sydney, NSW, Australia.
Lung volume change modifies pharyngeal airway patency by altering breathing-related passive force transmission between lower and upper airways (via tracheal and other connections). We hypothesise that such force transmission may also impact active upper airway dilator muscle function by altering resting muscle length. The aim of this study was to determine the relationship between end expiratory lung volume (EELV) and ability of sternohyoid muscle (SH) contraction to alter pharyngeal airway patency.
View Article and Find Full Text PDFPhysiol Int
September 2025
2Faculty of Sports Science, Ningbo University, No. 818 Fenghua Road, Jiangbei District, 315211, Ningbo City, Zhejiang Province, PR China.
Purpose: Contribution of the gastrocnemii muscles to ankle moment is influenced by the knee joint position because they span the knee and the ankle joint as well. However, limited information is available on the effect of knee joint position on soleus activation under dynamic plantarflexion, hence the aim of this study was to investigate if soleus have a compensatory strategy in fascicle behavior or EMG activity during knee flexed plantarflexion in order to reduce the magnitude of the decrement in ankle moment.
Equipment And Methods: Isokinetic dynamometry with EMG and ultrasound measurements was used to estimate medial gastrocnemius and soleus behavior during knee flexed and extended plantarflexions using three angular velocities.
World J Urol
September 2025
Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.
Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.