Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The contribution of microbial depolymerase has received much attention because of its potential in biopolymer degradation. In this study, the P(3HB) depolymerase enzyme of a newly isolated Burkholderia cepacia DP1 from soil in Penang, Malaysia, was optimized using response surface methodology (RSM). The factors affecting P(3HB) depolymerase enzyme production were studied using one-variable-at-a-time approach prior to optimization. Preliminary experiments revealed that the concentration of nitrogen source, concentration of carbon source, initial pH and incubation time were among the main factors influencing the enzyme productivity. An increase of 9.4 folds in enzyme production with an activity of 5.66 U/mL was obtained using optimal medium containing 0.028% N of di-ammonium hydrogen phosphate and 0.31% P(3HB-co-21%4HB) as carbon source at the initial pH of 6.8 for 38 h of incubation. Moreover, the RSM model showed great similarity between predicted and actual enzyme production indicating a successful model validation. This study warrants the ability of P(3HB) degradation by B. cepacia DP1 in producing higher enzyme activity as compared to other P(3HB) degraders being reported. Interestingly, the production of P(3HB) depolymerase was rarely reported within genus Burkholderia. Therefore, this is considered to be a new discovery in the field of P(3HB) depolymerase production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428109PMC
http://dx.doi.org/10.1007/s13205-017-0716-7DOI Listing

Publication Analysis

Top Keywords

p3hb depolymerase
16
cepacia dp1
12
enzyme production
12
newly isolated
8
isolated burkholderia
8
burkholderia cepacia
8
depolymerase enzyme
8
carbon source
8
source initial
8
depolymerase
6

Similar Publications

Poly(3-hydroxybutyrate), P(3HB), is an aliphatic polyester that is susceptible to biodegradation even in marine environments. The high biodegradability of P(3HB) can be attributed to the presence in the environment of extracellular P(3HB) depolymerase (PhaZ), the initial enzyme involved in P(3HB) degradation. In this study, we aimed to identify the gene encoding PhaZ in the marine P(3HB)-degrading bacterium Alteromonas sp.

View Article and Find Full Text PDF

Genome integration and expression of β-glucosidase in Priestia megaterium enhanced poly(3-hydroxybutyrate) production from cellobiose and cellulose.

Bioresour Technol

September 2025

Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan; Global Station for Food, Land and Water Resources, Hokkaido University, Sapporo, Japan. Electronic address:

Polyhydroxyalkanoates (PHAs) production using cellulosic biomass is a promising way for sustainable manufacturing of bioplastics. Priestia megaterium is an ideal choice as it can use glucose and xylose for PHA production. To further improve the strain for PHA production from cellobiose, we integrate exogenous β-glucosidase (Bgl) from Bacillus sp.

View Article and Find Full Text PDF

Plastic materials are widely used because of their strength, light weight, durability, and environmental resistance. However, their decomposition rates are significantly slower than their typical lifespans. The rapid and continuous increase in plastic consumption has caused severe environmental impacts due to the accumulation of plastic waste.

View Article and Find Full Text PDF

Polyhydroxyalkanoate (PHA) is a highly biodegradable microbial polyester, even in marine environments. In this study, we incorporated an enrichment culture-like approach in the process of isolating marine PHA-degrading bacteria. The resulting 91 isolates were suggested to fall into five genera (, , , , and ) based on 16S rRNA analysis, including two novel genera ( and ) as marine PHA-degrading bacteria.

View Article and Find Full Text PDF

The main aim of the study was to degrade poly-β-hydroxybutyrate (P(3HB)) in the sequencing batch biofilm reactor (SBBR) using biocatalyst. Enrichment method was used for the isolation of P(3HB) degrading bacteria. These bacterial strains were isolated from the wastewater sludge sample treated with P(3HB) sheets.

View Article and Find Full Text PDF