Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oncogenic signaling by NOTCH is elevated in brain tumor-initiating cells (BTIC) in malignant glioma, but the mechanism of its activation is unknown. Here we provide evidence that tenascin-C (TNC), an extracellular matrix protein prominent in malignant glioma, increases NOTCH activity in BTIC to promote their growth. We demonstrate the proximal localization of TNC and BTIC in human glioblastoma specimens and in orthotopic murine xenografts of human BTIC implanted intracranially. In tissue culture, TNC was superior amongst several extracellular matrix proteins in enhancing the sphere-forming capacity of glioma patient-derived BTIC. Exogenously applied or autocrine TNC increased BTIC growth through an α2β1 integrin-mediated mechanism that elevated NOTCH ligand Jagged1 (JAG1). Microarray analyses and confirmatory PCR and Western analyses in BTIC determined that NOTCH signaling components including JAG1, ADAMTS15, and NICD1/2 were elevated in BITC after TNC exposure. Inhibition of γ-secretase and metalloproteinase proteolysis in the NOTCH pathway, or silencing of α2β1 integrin or JAG1, reduced the proliferative effect of TNC on BTIC. Collectively, our findings identified TNC as a pivotal initiator of elevated NOTCH signaling in BTIC and define the establishment of a TN-α2β1-JAG1-NOTCH signaling axis as a candidate therapeutic target in glioma patients. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-16-2171DOI Listing

Publication Analysis

Top Keywords

notch signaling
12
btic
9
brain tumor-initiating
8
tumor-initiating cells
8
malignant glioma
8
extracellular matrix
8
tnc btic
8
elevated notch
8
tnc
7
notch
6

Similar Publications

Immunoglobulin E (IgE)-mediated cow's milk allergy (CMA) is an immune-mediated reaction to cow's milk (CM). Non-IgE-mediated CMA resolves in most children in the first years of life, whereas IgE-mediated CMA outgrowth is often later or not at all. The exact mechanisms underlying resolution of IgE-mediated CMA are not fully understood.

View Article and Find Full Text PDF

Molecular impact of NOTCH signaling dysregulation on ovarian cancer progression, chemoresistance, and taxane response.

Biomed Pharmacother

September 2025

Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Electronic address:

Patients with epithelial ovarian cancer (EOC) face high mortality due to late diagnosis, recurrence, metastasis, and drug resistance. The NOTCH signaling pathway plays a critical role in cancer progression. This study analyzed NOTCH pathway deregulation in EOC patients and its response to taxane treatment in vitro and in vivo.

View Article and Find Full Text PDF

Introduction Neuroendocrine tumors (NETs) are a rare and heterogeneous group of neoplasms with both clinical and genetic diversity. The clinical applicability of molecular profiling using liquid biopsy for identifying actionable drug targets and prognostic indicators in patients with advanced NETs remains unclear. Methods In this study, we utilized a custom-made 37 genes panel of circulating tumor DNA (ctDNA) based on next-generation sequencing (NGS) in 47 patients with advanced NETs.

View Article and Find Full Text PDF

Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.

View Article and Find Full Text PDF

Endothelial to mesenchymal transition: a central mechanism in diabetes-induced vascular pathology.

Korean J Physiol Pharmacol

September 2025

Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.

Diabetes mellitus is a major global health concern associated with micro-and macrovascular complications. Among the diverse mechanisms that contribute to vascular dysfunction in diabetes, endothelial to mesenchymal transition (EndMT) has emerged as a key pathological process. EndMT involves the loss of endothelial cell characteristics and the acquisition of mesenchymal features, resulting in impaired endothelial function, increased fibrosis, and inflammation.

View Article and Find Full Text PDF