98%
921
2 minutes
20
Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310518 | PMC |
http://dx.doi.org/10.1038/nchembio.2359 | DOI Listing |
Front Microbiol
August 2025
Department of Medical Laboratory Diagnostics, School of Medical Technology, Shaoyang University, Shaoyang, China.
is an environmental opportunistic fungal pathogen, which can lead to invasive aspergillosis in immunocompromised individuals, and resistant to conventional antifungual agents has become a growing concern. This study investigated the antifungal activity and the molecular antifungal mechanisms of Cinnamaldehyde (CA) against , specifically its impact on metabolic pathways and protein metabolism. In susceptibility tests, CA was found to exhibit promising antifungal activity against in both solid and liquid culture (biomass) systems, with the minimum inhibitory concentration (MIC) determined as 40-80 μg/mL.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Department of Chemistry and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109. Electronic address:
The AUA isoleucine codon is generally rare and used with varying frequency in bacterial genomes. The tRNA responsible for decoding this trinucleotide must be modified at the wobble position by tRNA lysidine synthetase (TilS) prior to aminoacylation and accommodation at the ribosome. To test the hypothesis that TilS catalytic efficiency correlates with AUA frequency, we cloned tilS genes from bacteria with varying AUA codon usage.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNA with their cognate amino acids, an essential step in protein biosynthesis. While biallelic mutations in aaRSs often result in severe multi-organ dysfunction accompanied by developmental delays, monoallelic mutations typically cause milder, tissue-specific symptoms. However, a de novo monoallelic nonsense mutation (R534*) in the asparaginyl-tRNA synthetase (AsnRS)-resulting in a premature stop codon and 15-residue C-terminal truncation-has been identified in multiple families and is associated with severe neurodevelopmental symptoms.
View Article and Find Full Text PDFRheumatology (Oxford)
September 2025
Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Osaka, Japan.
Objectives: This study aimed to establish a risk prediction model for the relapse of anti-synthetase syndrome-associated interstitial lung disease (ASyS-ILD).
Methods: Patients diagnosed with ASyS-ILD and treated with prednisolone and calcineurin inhibitors as remission induction therapy were enrolled in the Japanese multicentre MYKO cohort. We followed up on patients who experienced relapse of ASyS-ILD after remission induction therapy, and examined the risk factors for predicting relapse by comparing initial clinical and laboratory findings.
bioRxiv
August 2025
Department of Biology, University of Iowa, Iowa City, IA 52242 USA.
Charcot-Marie-Tooth disease (CMT) is an inherited peripheral neuropathy characterized by sensory dysfunction and muscle weakness, manifesting in the most distal limbs first and progressing more proximal. Over a hundred genes are currently linked to CMT with enrichment for activities in myelination, axon transport, and protein synthesis. Mutations in tRNA synthetases cause dominantly inherited forms of CMT and animal models with CMT-linked mutations in these enzymes display defects in neuronal protein synthesis.
View Article and Find Full Text PDF