Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endochondral ossification is the process where cartilage forms prior to ossification and in which new bone forms during both fracture healing and ectopic bone formation. Transitioning to ossification is a highly coordinated process between hypertrophic chondrocytes, vascular endothelial cells, osteoblasts and osteoclasts. A critical biological process that is central to the interactions of these various cell types is angiogenesis. Although it is well established that angiogenesis is crucial for fracture repair, less is known pertaining to the role of angiogenesis in ectopic bone formation. Furthermore, fracture repair models are complicated by extensive trauma, subsequent inflammatory responses and concurrent repair processes in multiple tissues. In order to more definitively characterize the relationship between angiogenesis and postnatal endochondral ossification, a model of ectopic bone formation was used. Human demineralized bone matrix (DBM) was implanted in immune-deficient mice (rag null (B6.129S7-Rag1/J)) to induce ectopic bone. Inhibition of angiogenesis with either a small molecule (TNP-470) or a targeted biological (Vascular Endothelial Growth Factor Receptor type 2 [VEGFR2] blocking antibody) prevented ectopic bone formation by 83% and 77%, respectively. Most striking was that the progression of chondrogenesis was halted during very early phases of chondrocyte differentiation between condensation and prehypertrophy (TNP-470) or the proliferative phase (VEGFR2 blockade) prior to hypertrophy, while osteoclast recruitment and resorption were almost completely inhibited. Our results demonstrate angiogenesis plays a developmental role in endochondral bone formation at a much earlier phase of chondrogenesis than suggested by prior findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500242PMC
http://dx.doi.org/10.1016/j.bone.2017.04.002DOI Listing

Publication Analysis

Top Keywords

ectopic bone
24
bone formation
24
bone
9
angiogenesis ectopic
8
endochondral ossification
8
vascular endothelial
8
fracture repair
8
angiogenesis
7
ectopic
6
formation
6

Similar Publications

To investigate the genetic determinants of fat distribution across anatomical sites and their implications for health outcomes. We analyzed neck-to-knee MRI data from the UK Biobank ( = 37,589) to measure fat at various locations and used Mendelian randomization to assess effects on 26 obesity-related diseases and 94 biomarkers from FinnGen and other consortia. We identified genetic loci associated with 10 fat depots: abdominal subcutaneous adipose tissue ( = 2 loci), thigh subcutaneous adipose tissue (25), thigh intermuscular adipose tissue (15), visceral adipose tissue (7), liver proton density fat fraction (PDFF) (8), pancreas PDFF (11), paraspinal adipose tissue (9), pelvic bone marrow fat (28), thigh bone marrow fat (27), and vertebrae bone marrow fat (5).

View Article and Find Full Text PDF

Introduction: Odanacatib (ODN), a cathepsin K inhibitor, is a drug that reduces bone resorption while preserving bone formation. ODN was initially developed for the treatment of postmenopausal osteoporosis, but further development as a systemic medication has been discontinued. Here, we propose ODN as a topical treatment, the coating of dental implants, to achieve an anabolic shift of early osseointegration.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a complicated systemic disease displaying various pathophysiological symptoms including mineral bone disorder (CKD-MBD). Ideally, early intervention for CKD-MBD would be desirable, however, there is not enough evidence regarding treatment of CKD-MBD, especially in its early stages, due to its multifactorial pathophysiology and the difficulty in generating adequate animal models. In this study, we evaluated the efficacy of a tissue nonspecific alkaline phosphatase (TNAP) inhibitor, SBI-425 in a CKD-MBD animal model, produced by a combination of nephrectomy and high inorganic phosphate (P) diet.

View Article and Find Full Text PDF

Early pharmacological blockade of the CXCL12-CXCR4 axis attenuates vertebral hypercalcification in a zebrafish model of pseudoxanthoma elasticum.

Biochem Biophys Rep

September 2025

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510100, China.

Pseudoxanthoma elasticum (PXE), caused by pathogenic variants in , is characterized by pathological ectopic calcification with poorly understood mechanisms and no effective therapies. To address this, we developed the first zebrafish model of human PXE by introducing the pathogenic point mutation ( , F2 generation) using the highly efficient zhyA3A-CBE5 cytosine base editor. Three mutant types (Type1-Type3, T1-T3) stratified by calcification severity, exhibited reduced levels of the calcification inhibitors vitamin K1 (VK1) and carboxylated matrix Gla protein (cMGP), which were inversely correlated with the severity of calcification.

View Article and Find Full Text PDF

Traumatic heterotopic ossification (THO) is a pathological process characterized by ectopic bone formation in soft tissues following trauma or surgical interventions, leading to pain, swelling, and restricted mobility. Current therapeutic strategies remain limited, with surgical excision often associated with recurrence and complications. Triptolide (TP), a diterpenoid triepoxide derived from Tripterygium wilfordii, has potent anti-inflammatory and immunomodulatory effects, making it a promising candidate for THO treatment.

View Article and Find Full Text PDF