Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light-operated drugs constitute a major target in drug discovery, since they may provide spatiotemporal resolution for the treatment of complex diseases (i.e. chronic pain). JF-NP-26 is an inactive photocaged derivative of the metabotropic glutamate type 5 (mGlu) receptor negative allosteric modulator raseglurant. Violet light illumination of JF-NP-26 induces a photochemical reaction prompting the active-drug's release, which effectively controls mGlu receptor activity both in ectopic expressing systems and in striatal primary neurons. Systemic administration in mice followed by local light-emitting diode (LED)-based illumination, either of the thalamus or the peripheral tissues, induced JF-NP-26-mediated light-dependent analgesia both in neuropathic and in acute/tonic inflammatory pain models. These data offer the first example of optical control of analgesia using a photocaged mGlu receptor negative allosteric modulator. This approach shows potential for precisely targeting, in time and space, endogenous receptors, which may allow a better management of difficult-to-treat disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388536PMC
http://dx.doi.org/10.7554/eLife.23545DOI Listing

Publication Analysis

Top Keywords

mglu receptor
16
receptor negative
12
negative allosteric
12
allosteric modulator
12
optical control
8
control pain
4
pain photoactive
4
mglu
4
photoactive mglu
4
receptor
4

Similar Publications

mGlu2 Receptors in the Basal Ganglia: A New Frontier in Addiction Therapy.

Front Biosci (Landmark Ed)

August 2025

Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.

Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGlus) are obligate dimer G protein-coupled receptors that can all homodimerize and heterodimerize in select combinations. Responses of mGlu heterodimers to selective ligands, including orthosteric agonists and allosteric modulators, are largely unknown. The pharmacological properties of each group II and III mGlu homodimer (except the exclusively retinally expressed mGlu6) and several heterodimers were examined when stochastically assembled in HEK293T cells, or specifically measured using an improved G protein-mediated bioluminescence resonance energy transfer assay employing complemented fragments of Nanoluciferase.

View Article and Find Full Text PDF

Metabotropic glutamate (mGlu) receptors play a crucial role in synaptic transmission through homodimeric or heterodimeric assemblies. Despite their dimeric nature, only one subunit within the mGlu dimer engages with G proteins during activation, and the biased activation can be further controlled by allosteric modulators. Considering the related molecular mechanisms remain elusive, we employed Gaussian accelerated molecular dynamics (GaMD) simulations to investigate the regulated mechanisms in mGlu-mGlu heterodimers.

View Article and Find Full Text PDF

Effect of the mGlu receptor positive allosteric modulator AZD8529 on L-DOPA-induced dyskinesia and psychosis-like behaviours in the parkinsonian marmoset.

Eur J Pharmacol

August 2025

Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada. Electronic address: philippe.huot@

AZD8529 is a highly selective metabotropic glutamate 2 (mGlu) receptor positive allosteric modulator (PAM) that has undergone clinical trials for schizophrenia and smoking cessation. Previously, we demonstrated that the selective mGlu receptor PAMs LY-487,379, CBiPES, and biphenylindanone A (BINA) alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset model of Parkinson's disease (PD). However, these drugs are not clinical candidates because of their pharmacological properties, contrary to AZD8529 which could be repurposed if pre-clinically efficacious.

View Article and Find Full Text PDF

Non-canonical internalization mechanisms of mGlu receptors.

Cell Rep

August 2025

Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France. Electronic address:

Cell surface G protein-coupled receptors (GPCRs) are tightly regulated through constitutive and agonist-induced internalization. While the mechanisms of constitutive internalization remain elusive, agonist-induced internalization very often involves receptor phosphorylation by GPCR kinases (GRKs) and β-arrestin recruitment. Dimeric class C metabotropic glutamate (mGlu1-mGlu8) receptors regulate synaptic transmission, but their internalization process remains ambiguous.

View Article and Find Full Text PDF