Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the first experimental gas-phase observation of an asymmetric, trans-NO formed by the dimerization of NO. In additional to the dominant NO species, rotational transitions have been observed for all species with single N and O substitutions as well as several multiply substituted isotopologues. These transitions were used to determine a complete substitution structure as well as an r structure from the fitted zero-point averaged rotational constants. The determined structure is found to be that of an ON-O-NO linkage with the shared oxygen atom closer to the NO than the NO (1.42 vs 1.61 Å). The structure is found to be nearly planar with a trans O-N-O-N linkage. From the spectra of the NNO species, we were able to determine the nuclear quadrupole coupling constants for each specific nitrogen atom. The equilibrium structure determined by ab initio quantum chemistry calculations is in excellent agreement with the experimentally determined structure. No spectral evidence of the predicted asymmetric, cis-NO was found in the spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4979182DOI Listing

Publication Analysis

Top Keywords

formed dimerization
8
initio quantum
8
quantum chemistry
8
determined structure
8
structure
6
gas-phase structure
4
structure asymmetric
4
asymmetric trans-dinitrogen
4
trans-dinitrogen tetroxide
4
tetroxide formed
4

Similar Publications

Previously published (NMe)[V(O)(μ-O)(pin)], has been shown to aerobically catalyze the oxidation of benzylic and allylic alcohols under mild conditions. Herein, we report syntheses of [V(O)(μ-O)(pin)] trimers, which are also active in OAD catalysis. Trimer formation requires an ammonium cation with at least two hydrogen atoms per cation (e.

View Article and Find Full Text PDF

High-Level Soluble Expression of Recombinant Human Bone Morphogenetic Protein-2 in .

ACS Synth Biol

September 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.

Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.

View Article and Find Full Text PDF

In this paper, we investigated the thermal, dynamical, and structural properties, as well as association patterns, in 3-phenyl-1-propanol (3P1Pol) and 3-phenyl-1-propanal (3P1Pal), with special attention paid to the latter compound. Both systems turned out to be good glass formers, differing by 17 K in the glass transition temperature, which indicated a strong change in the self-assembly pattern. This supposition was further confirmed by the analysis of dielectric spectra, where, apart from the α-relaxation, also a unique Debye (D)-mode, being a fingerprint of the self-association, characterized by different dynamical properties (dielectric strength, timescale separation from the α-process), was detected in both samples.

View Article and Find Full Text PDF

In the structure of the title compound, CHN·CHNOS·CHNOS, the central pyridinic rings are approximately coplanar to the benzo-thia-zole moieties. The phenyl groups are appreciably angled to the central rings [inter-planar angles of 57.30 (3)° for the anion and 79.

View Article and Find Full Text PDF

In the title compound, CHBrClO, the dihedral angle between the 4-bromo-2-chloro-phenyl ring and the aromatic ring of (alk-yloxy)phenyl moiety is found to be 77.21 (2)°. The torsion angle associated with the ester moiety is 173.

View Article and Find Full Text PDF