98%
921
2 minutes
20
We report the first experimental gas-phase observation of an asymmetric, trans-NO formed by the dimerization of NO. In additional to the dominant NO species, rotational transitions have been observed for all species with single N and O substitutions as well as several multiply substituted isotopologues. These transitions were used to determine a complete substitution structure as well as an r structure from the fitted zero-point averaged rotational constants. The determined structure is found to be that of an ON-O-NO linkage with the shared oxygen atom closer to the NO than the NO (1.42 vs 1.61 Å). The structure is found to be nearly planar with a trans O-N-O-N linkage. From the spectra of the NNO species, we were able to determine the nuclear quadrupole coupling constants for each specific nitrogen atom. The equilibrium structure determined by ab initio quantum chemistry calculations is in excellent agreement with the experimentally determined structure. No spectral evidence of the predicted asymmetric, cis-NO was found in the spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4979182 | DOI Listing |
Inorg Chem
September 2025
Boston University, Chemistry Department, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
Previously published (NMe)[V(O)(μ-O)(pin)], has been shown to aerobically catalyze the oxidation of benzylic and allylic alcohols under mild conditions. Herein, we report syntheses of [V(O)(μ-O)(pin)] trimers, which are also active in OAD catalysis. Trimer formation requires an ammonium cation with at least two hydrogen atoms per cation (e.
View Article and Find Full Text PDFACS Synth Biol
September 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.
View Article and Find Full Text PDFJ Chem Phys
September 2025
August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
In this paper, we investigated the thermal, dynamical, and structural properties, as well as association patterns, in 3-phenyl-1-propanol (3P1Pol) and 3-phenyl-1-propanal (3P1Pal), with special attention paid to the latter compound. Both systems turned out to be good glass formers, differing by 17 K in the glass transition temperature, which indicated a strong change in the self-assembly pattern. This supposition was further confirmed by the analysis of dielectric spectra, where, apart from the α-relaxation, also a unique Debye (D)-mode, being a fingerprint of the self-association, characterized by different dynamical properties (dielectric strength, timescale separation from the α-process), was detected in both samples.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2025
Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.
In the structure of the title compound, CHN·CHNOS·CHNOS, the central pyridinic rings are approximately coplanar to the benzo-thia-zole moieties. The phenyl groups are appreciably angled to the central rings [inter-planar angles of 57.30 (3)° for the anion and 79.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2025
Department of Physics Yuvaraja's College University of Mysore,Mysore 570005 Karnataka India.
In the title compound, CHBrClO, the dihedral angle between the 4-bromo-2-chloro-phenyl ring and the aromatic ring of (alk-yloxy)phenyl moiety is found to be 77.21 (2)°. The torsion angle associated with the ester moiety is 173.
View Article and Find Full Text PDF