98%
921
2 minutes
20
Meristems such as the shoot apical meristem and flower meristem (FM) act as a reservoir of stem cells, which reproduce themselves and supply daughter cells for the differentiation of lateral organs. In Oryza sativa (rice), the FLORAL ORGAN NUMBER2 (FON2) gene, which is similar to Arabidopsis CLAVATA3, is involved in meristem maintenance. In fon2 mutants, the numbers of floral organs are increased due to an enlargement of the FM. To identify new factors regulating meristem maintenance in rice, we performed a genetic screening of mutants that enhanced the fon2 mutation, and found a mutant line (2B-424) in which pistil number was dramatically increased. By using a map-based approach and next-generation sequencing, we found that the line 2B-424 had a complete loss-of-function mutation (a large deletion) in OsMADS3, a class C MADS-box gene that is known to be involved in stamen specification. Disruption of OsMADS3 in the fon2 mutant by CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) technology caused a flower phenotype similar to that of 2B-424, confirming that the gene responsible for enhancement of fon2 was OsMADS3. Morphological analysis showed that the fon2 and osmads3 mutations synergistically affected pistil development and FM determinacy. We also found that whorl 3 was duplicated in mature flowers and the FM was enlarged at an early developmental stage in severe osmads3 single mutants. These findings suggest that OsMADS3 is involved not only in FM determinacy in late flower development but also in FM activity in early flower development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcx038 | DOI Listing |
Planta
September 2025
Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea.
The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, PR China.
Background: The Aux/IAA protein is integral to the modulation of auxin signaling, which is essential for plant growth and development. However, systematic analysis on the Aux/IAA gene family in pineapple ( L.) remains unexplored.
View Article and Find Full Text PDFCurr Opin Plant Biol
September 2025
Department of Plant Biology, University of Illinois, Urbana-Champaign, USA. Electronic address:
Early floral meristem (FM) patterning is one of the most intensively studied developmental programs in plants. While extensive work has uncovered the molecular networks underlying key processes such as organ initiation and identity specification, integrating this knowledge into a comprehensive framework remains challenging. Organ initiation is governed by auxin-mediated positioning and boundary formation, whereas organ identity is determined by the combinatorial activities of ABCE-class transcription factors.
View Article and Find Full Text PDFEcol Evol
September 2025
Wildlife Ecology and Conservation Group, Department of Environmental Sciences Wageningen University & Research Wageningen the Netherlands.
The timing of seasonal life cycle events in many organisms is regulated by environmental cues, and understanding these relationships is essential for predicting species' responses to climate change. In honeybee colonies, brood rearing must align with floral resource availability to ensure colony growth and survival. However, the cues that initiate brood rearing remain unclear.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
The plant life cycle progresses through distinct phases defined by the morphology of the organs formed on the shoot. In Arabidopsis, age-dependent reduction in the related microRNAs miR156 and miR157 controls transitions from juvenile to adult vegetative phase and from adult to reproductive phase. However, whether these miRNA isoforms have specific contributions remains unclear.
View Article and Find Full Text PDF