98%
921
2 minutes
20
Background: Atrial fibrillation (AF) is often treated with catheter ablation, which induces scar formation to isolate misfiring electrical signals in the left atrium. Successful ablation restores sinus rhythm at the cost of replacing viable myocardium with scar. The impact of ablation scar on mechanical function of the left atrium is poorly understood.
Objective: We used a computational model to simulate various ablation patterns and determine their effect on atrial global and regional mechanical function.
Methods: A coupled finite-element and hemodynamic circuit model of the left atrium that represents the regional and global mechanics in paroxysmal AF patients was modified to simulate different ablation patterns: step-wise pulmonary vein isolation (PVI), wide area circumferential ablation (WACA), and a posterior ablation developed by nContact, Inc (Morrisville, NC, USA). Atrial pressure-volume relationships and regional wall motion were compared among the models.
Results: Ablation increased passive stiffness and decreased active work performed by the atrium. Active emptying volume decreased with increasing scar by up to 44% (11 mL) at a scar volume of 31%. At matched scar volumes, WACA decreased active emptying more severely than PVI and nContact. Similarly, wall motion was depressed most in the WACA model because WACA involved portions of the lateral wall with higher baseline motion.
Conclusion: Simulated ablation depressed atrial mechanical function to an extent that depended on both scar volume and location, primarily through reducing active emptying. Placing ablation scar in regions with high baseline motion resulted in greater depression of active function, while ablation of the posterior wall was less disruptive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pace.13086 | DOI Listing |
J Cardiovasc Electrophysiol
September 2025
Department of Cardiology, Stefan Cardinal Wyszynski Province Specialist Hospital, Lublin, Poland.
Introduction: Wave speed (WS) mapping, enabled by omnipolar technology, allows for real-time visualization of local conduction velocity (CV). Its utility in ventricular tachycardia (VT) ablation has not been fully characterized.
Methods And Results: We describe a case series of patients undergoing VT ablation in which WS mapping was applied alongside established techniques such as peak frequency (PF) mapping and isochronal late activation mapping (ILAM).
J Cardiovasc Electrophysiol
September 2025
Department of Internal Medicine, Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon.
J Cardiovasc Electrophysiol
September 2025
Department of Internal Clinical, Aenesthesiological, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
Br J Cancer
September 2025
Institute of Life Sciences, Bhubaneswar, Odisha, India.
Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.
Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.
Commun Biol
September 2025
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).
View Article and Find Full Text PDF