Evolutionary conservation of Notch signaling inhibition by TMEM131L overexpression.

Biochem Biophys Res Commun

INSERM U1126, Ecole Pratique des Hautes Etudes/PSL Research University, Hôpital Saint-Louis, Institut Universitaire d'Hématologie, hôpital Saint-Louis, Paris, France.

Published: May 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human KIAA0922/TMEM131L encodes a transmembrane protein, TMEM131L, that regulates the canonical Wnt/β-catenin signaling pathway by eliciting the lysosome-dependent degradation of phosphorylated LRP6 co-receptor. Here, we use a heterospecific Drosophila transgenic model to examine the potential evolutionary conservation of TMEM131L function. Analysis of TMEM131L transgenic flies shows that TMEM131L interference with the Wnt pathway results primarily from a Notch-dependent decrease in Wingless production. Consistently, lentivirus-mediated overexpression of TMEM131L in human CD34 hematopoietic progenitor cells leads to decreased susceptibility to Notch1 ligation and defective commitment toward the T lineage. These results show that TMEM131L corresponds to an evolutionary conserved regulator of the Notch signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.03.123DOI Listing

Publication Analysis

Top Keywords

evolutionary conservation
8
notch signaling
8
signaling pathway
8
tmem131l
7
conservation notch
4
signaling inhibition
4
inhibition tmem131l
4
tmem131l overexpression
4
overexpression human
4
human kiaa0922/tmem131l
4

Similar Publications

Metabolic Flexibility in Insects: Patterns, Mechanisms, and Implications.

Annu Rev Entomol

September 2025

2Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.

The evolutionary success of insects may be partly attributed to their profound ability to adjust metabolism in response to environmental stress or resource variability at a range of timescales. Metabolic flexibility encompasses the ability of an organism to adapt or respond to conditional changes in metabolic demand and tune fuel oxidation to match fuel availability. Here, we evaluate the mechanisms of metabolic flexibility in insects that are considered short-term, medium-term, and long-term responses.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

Many animal species live in multi-level societies regulated by complex patterns of dominance. Avoiding competition with dominant group-mates for resources such as food and mates is an important skill for subordinate individuals in these societies, if they wish to evade harassment and aggression. Chimpanzees (Pan troglodytes) are an example of such a species.

View Article and Find Full Text PDF

Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.

View Article and Find Full Text PDF

Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.

View Article and Find Full Text PDF