We present OocystMeter, a machine learning-based software developed to automate the segmentation of malaria oocysts from images of mosquito midguts stained with mercurochrome. Existing bioimage analysis tools, including machine learning-based ones, often struggle with the unique staining patterns, complex midgut backgrounds, and variable morphology of oocysts, making the determination of oocyst size and numbers cumbersome. To overcome these challenges, we curated a high-quality dataset comprised of 11,178 oocysts in midguts annotated by expert parasitologists.
View Article and Find Full Text PDFintrogression into mosquito populations has been shown to be effective in preventing dengue and is being evaluated for WHO prequalification. Monitoring the long-term introgression of (Mel)-positive mosquitoes, however, requires labor-intensive and costly BG-Sentinel traps (BG-traps). More affordable alternatives, such as using oviposition traps (ovitraps), have not been fully evaluated.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T-cell therapy for multiple myeloma targeting B-cell maturation antigen (BCMA) induces high overall response rates. However, relapse still occurs and novel strategies for targeting multiple myeloma cells using CAR T-cell therapy are needed. SLAMF7 (also known as CS1) and CD38 on tumor plasma cells represent potential alternative targets for CAR T-cell therapy in multiple myeloma, but their expression on activated T cells and other hematopoietic cells raises concerns about the efficacy and safety of such treatments.
View Article and Find Full Text PDFChanges in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127 early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127 ELPs, which persists until puberty.
View Article and Find Full Text PDFChimeric antigen receptor T cells (CAR-T) have provided promising results in multiple myeloma (MM). However, many patients still relapse, pointing toward the need of improving this therapy. Here, we analyzed peripheral blood T cells from MM patients at different stages of the disease and investigated their phenotype and capacity to generate functional CAR-T directed against CS1 or B Cell Maturation antigen.
View Article and Find Full Text PDFBluetongue virus (BTV) and African horse sickness virus (AHSV) cause economically important diseases that are currently exotic to the United Kingdom (UK), but have significant potential for introduction and onward transmission. Given the susceptibility of animals kept in zoo collections to vector-borne diseases, a qualitative risk assessment for the introduction of BTV and AHSV to ZSL London Zoo was performed. Risk pathways for each virus were identified and assessed using published literature, animal import data and outputs from epidemiological models.
View Article and Find Full Text PDFMechanisms driving acute graft-versus-host disease (aGVHD) onset in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) are still poorly understood. To provide a detailed characterization of tissue-infiltrating T lymphocytes (TL) and search for eventual site-specific specificities, we developed a xenogeneic model of aGVHD in immunodeficient mice. Phenotypic characterization of xenoreactive T lymphocytes (TL) in diseased mice disclosed a massive infiltration of GVHD target organs by an original CD4CD8 TL subset.
View Article and Find Full Text PDFThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127 and CD127 early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127 and CD127 ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2017
Human KIAA0922/TMEM131L encodes a transmembrane protein, TMEM131L, that regulates the canonical Wnt/β-catenin signaling pathway by eliciting the lysosome-dependent degradation of phosphorylated LRP6 co-receptor. Here, we use a heterospecific Drosophila transgenic model to examine the potential evolutionary conservation of TMEM131L function. Analysis of TMEM131L transgenic flies shows that TMEM131L interference with the Wnt pathway results primarily from a Notch-dependent decrease in Wingless production.
View Article and Find Full Text PDFIn this study, we identify transmembrane protein 131-like (TMEM131L) as a novel regulator of thymocyte proliferation and demonstrate that it corresponds to a not as yet reported inhibitor of Wnt signaling. Short hairpin RNA-mediated silencing of TMEM131L in human CD34(+) hematopoietic progenitors, which were then grafted in NOD-SCID/IL-2rγ(null) mice, resulted in both thymocyte hyperproliferation and multiple pre- and post-β-selection intrathymic developmental defects. Consistent with deregulated Wnt signaling, TMEM131L-deficient thymocytes expressed Wnt target genes at abnormally high levels, and they displayed both constitutive phosphorylation of Wnt coreceptor LRP6 and β-catenin intranuclear accumulation.
View Article and Find Full Text PDFTo model the developmental pattern of human prothymocytes and thymopoiesis, we used NOD-scid/γc(-/-) mice grafted with human umbilical cord blood CD34(+) hematopoietic progenitor cells (HPCs). Human prothymocytes developed in the murine bone marrow (BM) from multipotent CD34(++)CD38(lo)lineage(-) HPCs to CD34(++)CD7(+)CD2(-) pro-T1 cells that progressed in a Notch-dependent manner to CD34(+)CD7(++)CD2(+) pro-T2 cells, which migrated to the thymus. BM prothymocyte numbers peaked 1 mo after graft, dropped at mo 2, and persisted at low levels thereafter, with only a few CD34(+)CD7(lo) prothymocytes with limited T potential being detected by mo 5.
View Article and Find Full Text PDFThe mechanisms regulating the emergence of BM prothymocytes remain poorly characterized. Genome-wide transcriptome analyses looking for genes expressed in human prothymocytes led to the identification of AF1q/MLLT11 as a candidate gene conceivably involved in this process. Analysis of AF1q protein subcellular localization and intracellular trafficking showed that despite pronounced karyophily, it was subjected to constitutive nuclear export followed by ubiquitin-mediated degradation in the centrosomal area.
View Article and Find Full Text PDFWe analyzed the role of human immunodeficiency virus (HIV)-1 matrix protein (MA) during the virus replication afferent phase. Single-round infection of H9 T lymphocytes showed that the combined mutation of MA Lys residues 26-27 in MA reported nuclear localization signal (NLS)-1 impaired infectivity, abrogated 2-LTR-circle formation and significantly reduced integration. However, the mutation did not affect viral DNA docking to chromatin in either interphasic or mitotic cells, indicating that MA N-terminal basic domain should not represent a major determinant of HIV-1 nuclear import in T lymphocytes.
View Article and Find Full Text PDFWe examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration.
View Article and Find Full Text PDFWe report that human T cells persistently infected with primate foamy virus type 1 (PFV-1) display an increased capacity to bind human immunodeficiency virus type 1 (HIV-1), resulting in increased cell permissiveness to HIV-1 infection and enhanced cell-to-cell virus transmission. This phenomenon is independent of HIV-1 receptor, CD4, and it is not related to PFV-1 Bet protein expression. Increased virus attachment is specifically inhibited by heparin, indicating that it should be mediated by interactions with heparan sulfate glycosaminoglycans expressed on the target cells.
View Article and Find Full Text PDFPoor efficiency of gene transfer into cancer cells constitutes the major bottleneck of current cancer gene therapy. We reasoned that because tumors are masses of rapidly dividing cells, they would be most efficiently transduced with vector systems allowing transgene propagation. We thus designed two replicative retrovirus-derived vector systems: one inherently replicative vector, and one defective vector propagated by a helper retrovirus.
View Article and Find Full Text PDF