98%
921
2 minutes
20
Misdirected catalytic activity of histone methyltransferase Dot1L is believed to be causative for a subset of highly aggressive acute leukemias. Targeting the catalytic domain of Dot1L represents a potential therapeutic approach for these leukemias. In the context of a comprehensive Dot1L hit finding strategy, a knowledge-based virtual screen of the Dot1L SAM binding pocket led to the discovery of , a non-nucleoside fragment mimicking key interactions of SAM bound to Dot1L. Fragment linking of and , an induced back pocket binder identified in earlier studies, followed by careful ligand optimization led to the identification of , a highly potent, selective and structurally novel Dot1L inhibitor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346981 | PMC |
http://dx.doi.org/10.1021/acsmedchemlett.6b00519 | DOI Listing |
RSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDFFASEB Bioadv
September 2025
Kobilka Institute of Innovative Drug Discovery, School of Medicine The Chinese University of Hong Kong Shenzhen Guangdong China.
Formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor (GPCR) that mediates chemotaxis and bactericidal activities in phagocytes. The monoclonal antibody 5F1 is generated against full-length FPR1 and used widely for detection of FPR1 expression. This study aimed to characterize 5F1 for its functions.
View Article and Find Full Text PDFSAR QSAR Environ Res
August 2025
Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India.
, a causative agent of lymphatic filariasis, relies on its endosymbiont for survival. MurE ligase, a key enzyme in peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the endosymbiont of (MurE).
View Article and Find Full Text PDFNat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.
View Article and Find Full Text PDF