98%
921
2 minutes
20
There are over 150 known human proteins which are tethered to the cell surface via glycosylphosphatidylinositol (GPI) anchors. These proteins play a variety of important roles in development, and particularly in neurogenesis. Not surprisingly, mutations in the GPI anchor biosynthesis and remodeling pathway cause a number of developmental disorders. This group of conditions has been termed inherited GPI deficiencies (IGDs), a subgroup of congenital disorders of glycosylation; they present with variable phenotypes, often including seizures, hypotonia and intellectual disability. Here, we report two siblings with compound heterozygous variants in the gene phosphatidylinositol glycan anchor biosynthesis, class P (PIGP) (NM_153681.2: c.74T > C;p.Met25Thr and c.456delA;p.Glu153AsnFs*34). PIGP encodes a subunit of the enzyme that catalyzes the first step of GPI anchor biosynthesis. Both children presented with early-onset refractory seizures, hypotonia, and profound global developmental delay, reminiscent of other IGD phenotypes. Functional studies with patient cells showed reduced PIGP mRNA levels, and an associated reduction of GPI-anchored cell surface proteins, which was rescued by exogenous expression of wild-type PIGP. This work associates mutations in the PIGP gene with a novel autosomal recessive IGD, and expands our knowledge of the role of PIG genes in human development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddx077 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
Multivalent binding and the resulting dynamical clustering of receptors and ligands are known to be key features in biological interactions. For optimizing biomaterials capable of similar dynamical features, it is essential to understand the first step of these interactions, namely the multivalent molecular recognition between ligands and cell receptors. Here, we present the reciprocal cooperation between dynamic ligands in supramolecular polymers and dynamic receptors in model cell membranes, determining molecular recognition and multivalent binding via receptor clustering.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Pharmacy, College of Pharmacy, and Institute of Pharmaceutical Science & Technology, Hanyang University ERICA, Ansan, Republic of Korea.
Cellular prion protein (PrP) is a glycoprotein tethered to the plasma membrane via a GPI-anchor, and it plays a crucial role in prion diseases by undergoing conformational change to PrP. To generate a knock-in (KI) mouse model expressing bank vole PrP (BVPrP), a KI targeting construct was designed. However, a Prnp gene sequence that encodes PrP lacking seven C-terminal amino acid residues of the GPI-anchoring signal sequence (GPI-SS) was unintentionally introduced into the construct.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia.
Human aldo-keto reductase 1C3 (AKR1C3) is a steroid modifying enzyme involved in cancer progression. Here, A-ring modified 17α-picolyl and 17()-picolinylidene androstane derivatives are shown to inhibit AKR1C3 activity . None of the androstane derivatives have off-target affinity for the androgen receptor, based on a fluorescence assay in yeast cells.
View Article and Find Full Text PDFElife
September 2025
Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, China.
The opportunistic pathogen serves as a model organism for studying multiple signal transduction pathways. The chemoreceptor cluster, a core component of the chemotaxis pathway, is assembled from hundreds of proteins. The unipolar distribution of receptor clusters has long been recognized, yet the precise mechanism governing their assembly remains elusive.
View Article and Find Full Text PDFMol Genet Metab
August 2025
Laboratory for Molecular Diagnosis, Department of Human Genetics, KU Leuven, Leuven, Belgium. Electronic address:
The polyisoprenoid lipid dolichol is critical for eukaryotic glycosylation. It is used as the membrane anchor for mono- or oligosaccharides transferred during N-glycosylation, O/C-mannosylation and glycosylphosphatidylinositol anchor biosynthesis. Disorders affecting the synthesis or utilization of dolichol cause defective glycosylation and are therefore classified as Congenital Disorders of Glycosylation (CDG).
View Article and Find Full Text PDF