Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synaptic protein synthesis is essential for modification of the brain by experience and is aberrant in several genetically defined disorders, notably fragile X (FX), a heritable cause of autism and intellectual disability. Neural activity directs local protein synthesis via activation of metabotropic glutamate receptor 5 (mGlu), yet how mGlu couples to the intracellular signaling pathways that regulate mRNA translation is poorly understood. Here, we provide evidence that β-arrestin2 mediates mGlu-stimulated protein synthesis in the hippocampus and show that genetic reduction of β-arrestin2 corrects aberrant synaptic plasticity and cognition in the Fmr1 mouse model of FX. Importantly, reducing β-arrestin2 does not induce psychotomimetic activity associated with full mGlu inhibitors and does not affect G signaling. Thus, in addition to identifying a key requirement for mGlu-stimulated protein synthesis, these data suggest that β-arrestin2-biased negative modulators of mGlu offer significant advantages over first-generation inhibitors for the treatment of FX and related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391046PMC
http://dx.doi.org/10.1016/j.celrep.2017.02.075DOI Listing

Publication Analysis

Top Keywords

protein synthesis
20
metabotropic glutamate
8
glutamate receptor
8
mglu-stimulated protein
8
protein
5
synthesis
5
β-arrestin2
4
β-arrestin2 couples
4
couples metabotropic
4
receptor neuronal
4

Similar Publications

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF

Objective: To analyze the filum terminale (FT) of children with tethered cord syndrome (TCS) and aborted fetuses without neurological disorders in order to investigate the expression of significantly differentially expressed proteins in the FT under both pathological and physiological conditions.

Methods: According to the inclusion and exclusion criteria, 35 FT samples were selected, and the samples were subjected to immunohistochemistry and H&E staining. The data were analyzed using one-way analysis of variance, and P < 0.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway-also known as the RAS/RAF/MEK/ERK pathway-is a critical signalling cascade involved in regulating cell growth, proliferation, and survival. First discovered in the early 1980s, the pathway's extracellular signal-regulated kinase (ERK) subfamily was identified in the 1990s. The ERK family includes several isoforms-ERK1, ERK2, ERK3, ERK5, and ERK6-with ERK1 (MAPK3) and ERK2 (MAPK1) being the most well-characterised and playing central roles in MAPK signalling.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) are chemical modifications that occur on specific amino acid residues after protein biosynthesis, which can affect protein function by altering protein structure, localization and activity, thus expanding protein diversity. Extensive research has demonstrated that PTMs can regulate various metabolic processes, such as glucose and lipid metabolism, as well as immune modulation in tumor cells, thereby promoting tumor initiation, progression, and metastasis. In this article, we systematically review a class of emerging PTMs whose roles in tumor metabolism and immune regulation have gradually been recognized in recent years, including six types: lactylation, palmitoylation, SUMOylation, succinylation, crotonylation, and myristoylation.

View Article and Find Full Text PDF