98%
921
2 minutes
20
Meiotic failure in oocytes is the major determinant of human zygote-originated reproductive diseases, the successful accomplishment of meiosis largely relay on the normal functions of many female fertility factors. Elmod2 is a member of the Elmod family with the strongest GAP (GTPase-activating protein) activity; although it was identified as a possible maternal protein, its actual physiologic role in mammalian oocytes has not been elucidated. Herein we reported that among Elmod family proteins, Elmod2 is the most abundant in mouse oocytes, and that inhibition of Elmod2 by specific siRNA caused severe meiotic delay and abnormal chromosomal segregation during anaphase. Elmod2 knockdown also significantly decreased the rate of oocyte maturation (to MII, with first polar body extrusion), and significantly greater numbers of Elmod2-knockdown MII oocytes were aneuploid. Correspondingly, Elmod2 knockdown dramatically decreased fertilization rate. To investigate the mechanism(s) involved, we found that Elmod2 knockdown caused significantly more abnormal mitochondrial aggregation and diminished cellular ATP levels; and we also found that Elmod2 co-localized and interacted with Arl2, a GTPase that is known to maintain mitochondrial dynamics and ATP levels in oocytes. In summary, we found that Elmod2 is the GAP essential to meiosis progression of mouse oocytes, most likely by regulating mitochondrial dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444355 | PMC |
http://dx.doi.org/10.1080/15384101.2017.1304329 | DOI Listing |
FASEB J
September 2025
Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Prague, Czech Republic.
Mitochondria in the egg are suggested to be crucial for the onset of new life. However, there is ambiguous knowledge about the necessity for fertilization and early embryonic development. Therefore, we created a conditional Tfam knockout (Tfam; Zp3-Cre) to produce Tfam oocytes for investigation of the mitochondrial abundance in oocytes and early embryos.
View Article and Find Full Text PDFCell Discov
September 2025
Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Yamanashi, Japan.
Background: Lysosomes serve not only in the degradation of cellular components but also as calcium (Ca) stores. In this study, we investigated the effects of trans-Ned19, an inhibitor of lysosomal calcium channels known to block two-pore channels (TPCs), on fertilization and oocyte activation in mice.
Methods: Pronuclear formation was assessed via Hoechst 33342 staining, cortical granule release was evaluated using agglutinin-fluorescein isothiocyanate (LCA-FITC) staining, intracellular Ca levels were monitored with Cal-520 AM, and sperm motility was analyzed using a sperm motility analysis system (SMAS).
J Cell Mol Med
September 2025
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
Diminished ovarian reserve (DOR) poses significant challenges in reproductive health, with emerging evidence implicating DNA damage repair pathways. While GADD45A is a critical regulator of DNA repair, cell cycle and apoptosis, its role in DOR pathogenesis remains unexplored. We employed transcriptome sequencing, qPCR and Western Blot analyses to compare GADD45A expression in granulosa cells (GCs) between DOR patients and controls.
View Article and Find Full Text PDFMol Hum Reprod
September 2025
Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Antwerp, Belgium.
Maternal diet-induced obesity (DIO) may affect adult offspring oocyte quality due to mitochondrial dysfunction. Here, we investigated whether offspring of DIO mothers exhibit mitochondrial abnormalities in their primordial follicle oocytes (PFOs) already at birth, and if (further) alterations can be detected at weaning. Female Swiss mice were fed a control or obesogenic diet for 7 weeks before mating, and throughout pregnancy and lactation.
View Article and Find Full Text PDF