Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A current challenge in the field of artificial molecular machines is the synthesis and implementation of systems that can produce useful work when fuelled with a constant source of external energy. The first experimental achievements of this kind consisted of machines with continuous unidirectional rotations and translations that make use of 'Brownian ratchets' to bias random motions. An intrinsic limitation of such designs is that an inversion of directionality requires heavy chemical modifications in the structure of the actuating motor part. Here we show that by connecting subunits made of both unidirectional light-driven rotary motors and modulators, which respectively braid and unbraid polymer chains in crosslinked networks, it becomes possible to reverse their integrated motion at all scales. The photostationary state of the system can be tuned by modulation of frequencies using two irradiation wavelengths. Under this out-of-equilibrium condition, the global work output (measured as the contraction or expansion of the material) is controlled by the net flux of clockwise and anticlockwise rotations between the motors and the modulators.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2017.28DOI Listing

Publication Analysis

Top Keywords

motors modulators
8
dual-light control
4
control nanomachines
4
nanomachines integrate
4
integrate motor
4
motor modulator
4
modulator subunits
4
subunits current
4
current challenge
4
challenge field
4

Similar Publications

Individually foraging ants use egocentric views as a dominant navigation strategy for learning and retracing routes. Evidence suggests that route retracing can be achieved by algorithms which use views as 'visual compasses', where individuals choose the heading that leads to the most familiar visual scene when compared to route memories. However, such a mechanism does not naturally lead to route approach, and alternative strategies are required to enable convergence when off-route and for correcting on-route divergence.

View Article and Find Full Text PDF

Subthalamic deep brain stimulation (STN-DBS) provides unprecedented spatiotemporal precision for the treatment of Parkinson's disease (PD), allowing for direct real-time state-specific adjustments. Inspired by findings from optogenetic stimulation in mice, we hypothesized that STN-DBS can mimic dopaminergic reinforcement of ongoing movement kinematics during stimulation. To investigate this hypothesis, we delivered DBS bursts during particularly fast and slow movements in 24 patients with PD.

View Article and Find Full Text PDF

Bridging feeling and motion: Insula-premotor dynamics in the processing of action vitality forms.

Proc Natl Acad Sci U S A

September 2025

Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy.

Typically, people perform actions in a valenced-positive or negative-way, depending on their attitudes or desires. These forms of action are named vitality forms (VFs). While it is well established that action goals are mediated by a parieto-frontal network, less is known about the processing of VFs.

View Article and Find Full Text PDF

The neuroprotective potential of tyrosine kinase inhibitors (TKIs), potent anticancer drugs, was verified against various neurodegenerative insults, but not Huntington's disease (HD). These promising outcomes were due to their ability to modulate various intracellular signalling pathways. Hence, the current study aimed to evaluate the neuroprotective effects of lapatinib and pazopanib in the 3-nitropropionic (3-NP)-induced HD model in rats.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) often leads to severe motor and sensory impairments, and current treatment methods have not achieved complete neural repair. In recent years, exosomes have become a research focus in the treatment of nerve injuries due to their important roles in intercellular information transfer, immune regulation, and neural repair. Our study conducts a scientometric analysis to map the research landscape related to exosomes in SCI.

View Article and Find Full Text PDF