98%
921
2 minutes
20
Passive, LC resonators have the potential to serve as small, robust, low cost, implantable sensors to wirelessly monitor implants following orthopedic surgery. One significant barrier to using LC sensors is the influence on the sensor's resonance of the surrounding conductive high permittivity media in vivo. The surrounding media can detune the resonant frequency of the LC sensor resulting in a bias. To mitigate the effects of the surrounding media, we added a "capping layer" to LC sensors to isolate them from the surrounding media. Several capping materials and thicknesses were tested to determine effectiveness at reducing the sensor's interaction with the surrounding media. Results show that a 1 mm glass capping layer on the outer surfaces of the sensor was sufficient to reduce the effects of the media on sensor signal to less than 1%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2016.7591100 | DOI Listing |
JMIR Public Health Surveill
September 2025
Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.
Background: In recent years, social media has emerged as a pivotal tool in implementation science efforts to address the HIV epidemic. Engaging community partners is essential to ensure the successful and equitable implementation of social media strategies. There is a notable lack of scholarship addressing the operational considerations for studies using social media strategies in community-partnered HIV research.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University;
Posterior lumbar screw fixation is the most common surgical method for lumbar disc herniation, but patients often face multiple complications postoperatively. The occurrence of screw track loosening can lead to fusion failure and even life-threatening screw track extrusion. However, there is currently a lack of animal models specifically targeting changes in the screw track following lumbar screw fixation.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
Precision in controlling the microenvironment of nanospaces is a potent strategy for exploring architecture‒function relationships. Herein, a face-capped tetrahedral cage, featuring Pd‒Pd-bonded vertices, with a tailored nanospace surrounded by 12 ethyl units, was facilitated to adaptively accommodate a library of guests with different sizes and shapes, including C6 cyclic hydrocarbons, adamantane derivatives, S and P. This nanocavity can achieve strong binding with cyclohexane in non-aqueous media in contrast to reported structurally similar non--functionalized cages by an increase of four orders of magnitude.
View Article and Find Full Text PDFNanoscale
September 2025
Université Paris Cité, Laboratoire ITODYS, CNRS, F-75006 Paris, France.
Aluminum (Al) is a cost-effective alternative to noble metals for plasmonics, particularly in the ultraviolet (UV) and visible regions. However, in the near-infrared (NIR) region, its performance is hindered by interband transitions (IBTs) at around 825 nm, leading to increased optical losses and broad resonances. Surface lattice resonances (SLRs) offer a promising solution by enhancing the plasmonic quality factor (-factor) through coherent coupling of localized surface plasmon (LSP) modes with Rayleigh anomalies.
View Article and Find Full Text PDF