98%
921
2 minutes
20
The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432407 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2017.02.061 | DOI Listing |
Cereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFNeuropharmacology
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:
Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2025
Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2025
University of Washington, Seattle, Washington, USA.
Prior findings indicate that individuals who stutter do not show the typical modulation of auditory processing that is observed during speech movement planning in nonstuttering speakers. We now ask whether this lack of planning-related sensory modulation in stuttering adults is specific to the auditory domain. In this first study (15 stuttering and 15 nonstuttering participants), we implemented the prior stimulation timeline in a paradigm with orofacial skin stretch stimuli.
View Article and Find Full Text PDFFront Behav Neurosci
August 2025
Department of Sensory and Cognitive Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Sound influences motor functions and sound perception is conversely modulated by locomotion. Accumulating evidence supports an interconnection between the auditory system and the basal ganglia (BG), which has functional implications on the interaction between the two systems. Substantial evidence now supports auditory cortex and auditory thalamus inputs to the tri-laminar region of the tail of the striatum (tTS) in rodents.
View Article and Find Full Text PDF