98%
921
2 minutes
20
In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of 'funnel plasmodesmata'. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as 'batch unloading'. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365319 | PMC |
http://dx.doi.org/10.7554/eLife.24125 | DOI Listing |
Plant Cell Environ
September 2025
State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Plant phenotypes exhibit high plasticity, with shoot branching as a prime example and a key factor influencing yield in many species. The availability of photosynthates is a critical determinant of shoot branching (or tillering in monocots). Carbohydrates, primarily in the form of sucrose, are synthesised in actively photosynthetic leaves (sources) and transported to non-photosynthetic tissues (sinks), such as tiller buds.
View Article and Find Full Text PDFJ Exp Bot
August 2025
Humboldt-Universität zu Berlin, Institute of Biology, Plant Physiology Department, Philippstr. 13, Building 12, 10115 Berlin, Germany.
Plant sucrose transporters of the SUT and SWEET family are essential for phloem loading and unloading in higher plants. Members of both families are able to form homo- and hetero-oligomers, thereby changing their subcellular localization and functionality. Not only oligomerization, but also interaction with other proteinaceous interaction partners might affect the subcellular localization and thereby functionality of plant sucrose and glucose transporters.
View Article and Find Full Text PDFJ Agric Food Chem
July 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
SWEET proteins are essential sugar transporters in plants, playing key roles in growth, development, and stress responses. This review discusses their unique transmembrane helical structures, conserved motifs, and classification into four evolutionary clades with substrate preferences. SWEETs mediate phloem loading, fruit and seed development, hormone transport, and plant-microbe interactions.
View Article and Find Full Text PDFBMC Res Notes
May 2025
UE INRAE Pech Rouge, Montpellier, France.
Objective: The grapevine is one of the most widely grown perennial crops worldwide. As for other species displaying clusters of small fruits, the development of single berries within a bunch is asynchronous and heterogeneous. Because of this, the study of water and solute accumulation kinetics and balance at the organ level cannot be directly extrapolated from populations of fruits.
View Article and Find Full Text PDFQuant Plant Biol
May 2025
International Research Center for Environmental Membrane Biology, School of Agriculture and Bioengineering, Foshan University, Foshan, China.
Potassium is an essential macronutrient required for plant growth and development. Over the recent decade, an important signalling role of K has emerged. Here, we discuss some aspects of such signalling at the various levels of plant functional organisation.
View Article and Find Full Text PDF