98%
921
2 minutes
20
Objectives: Historical evidence has provided information regarding disease and mortality in Napoleon Bonaparte's Grand Army, but dietary information beyond individual soldier accounts remains scarce. The purpose of this research is to reconstruct the diets of Napoleon's multiethnic army who were associated with the Russian Campaign of 1812.
Materials And Methods: We conducted stable carbon and nitrogen isotope ratio analysis on femoral bone collagen of 78 individuals recovered from a salvage excavation at the mass gravesite of Šiaurės miestelis in Vilnius, Lithuania. These individuals were later discovered to be Napoleonic soldiers and camp followers who participated in the 1812 Russian Campaign.
Results: Stable carbon isotope ratios range from -19.2‰ to -11.8‰, with a mean of -17.8‰ ± 1.5‰ (1 σ). Stable nitrogen isotope ratios range from 7.1‰ to 13.6‰, with a mean of 10.5‰ ± 1.4‰ (1 σ). Both δ C and δ N values show a wide range of variation.
Discussion: Stable isotope data indicate considerable dietary variation in this population associated with a multiethnic and socially stratified military population. Diets ranged from predominantly C -based to predominantly C -based, with varying inputs of terrestrial, freshwater, and marine animal protein. Comparison with other European populations further denotes the exceptional range of dietary variation of soldiers and camp followers in Napoleon's army.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajpa.23184 | DOI Listing |
Environ Sci Technol
September 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada.
Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.
View Article and Find Full Text PDFSmall Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
CO electroreduction to produce fuels and chemicals is of great significance. Molecular catalysts offer valuable advantages in light of their well-defined active sites and tunable structural and electronic properties. However, their stability is often compromised by rigid conjugated structures.
View Article and Find Full Text PDF