Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Downhill running-based overtraining model increases the hypothalamic levels of IL-1β, TNF-α, SOCS3, and pSAPK-JNK. The aim of the present study was to verify the effects of 3 overtraining protocols on the levels of BiP, pIRE-1 (Ser724), pPERK (Thr981), pelF2α (Ser52), ATF-6, GRP-94, caspase 4, caspase 12, pAKT (Ser473), pmTOR (Ser2448), and pAMPK (Thr172) proteins in the mouse hypothalamus. The mice were randomized into the control, overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR) groups. After the overtraining protocols (i.e., at the end of week 8), hypothalamus was removed and used for immunoblotting. The OTR/down group exhibited increased levels of all of the analyzed endoplasmic reticulum stress markers in the hypothalamus at the end of week 8. The OTR/up and OTR groups exhibited increased levels of BiP, pIRE-1 (Ser724), and pPERK (Thr981) in the hypothalamus at the end of week 8. There were no significant differences in the levels of caspase 4, caspase 12, pAKT (Ser473), pmTOR (Ser2448), and pAMPK (Thr172) between the experimental groups at the end of week 8. In conclusion, the 3 overtraining protocols increased the endoplasmic reticulum stress at the end of week 8.

Download full-text PDF

Source
http://dx.doi.org/10.1139/apnm-2016-0542DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
12
reticulum stress
12
overtraining protocols
12
hypothalamus mice
8
levels bip
8
bip pire-1
8
pire-1 ser724
8
ser724 pperk
8
pperk thr981
8
caspase caspase
8

Similar Publications

GPCRs are known for their versatile signaling roles at the plasma membrane; however, recent studies have revealed that these receptors also function within various intracellular compartments, such as endosomes, the Golgi apparatus, and the endoplasmic reticulum. This spatially distinct signaling, termed location bias, allows GPCRs to initiate unique signaling cascades and influence cellular processes-including cAMP production, calcium mobilization, and protein phosphorylation-in a compartment-specific manner. By mapping the impact of GPCR signaling from these subcellular locations, this chapter emphasizes the mechanisms underlying signaling from intracellular receptor pools in diversifying receptor functionality.

View Article and Find Full Text PDF

Ca Fluxes across Membrane Contact Sites.

Cold Spring Harb Perspect Biol

September 2025

Department of Biomedical Sciences (DSB), University of Padova, Padova 35131, Italy

The calcium ion (Ca) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca flux through specialized channels.

View Article and Find Full Text PDF

Knockdown of translocon-associated protein subunit beta (TRAPβ) stimulates cell cycle arrest and apoptosis in human colorectal cancer cells.

Biochim Biophys Acta Mol Cell Res

September 2025

Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA. Electronic address:

Translocon-associated protein subunit beta (TRAPβ), also known as signal sequence receptor 2 (SSR2) serves as an auxiliary protein facilitating co-translational translocation in the endoplasmic reticulum (ER); however, its role in colorectal cancer is unknown to date. The objectives of the current study are to examine if TRAPβ/SSR2 knockdown affects the cell proliferation and to elucidate mechanisms by which TRAPβ/SSR2 regulates proliferation of human colorectal cancer. We silenced TRAPβ/SSR2 transiently and stably in human colorectal cancer cell lines and analyzed cell proliferative properties.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.

View Article and Find Full Text PDF