98%
921
2 minutes
20
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258664 | PMC |
http://dx.doi.org/10.1007/s13280-016-0872-8 | DOI Listing |
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly susceptible to wind and water erosion. This results in the dispersion of contaminants into adjacent ecosystems.
View Article and Find Full Text PDFEnviron Monit Assess
August 2025
Division of Soil Science & Agricultural Chemistry, Sher-E-Kashmir University of Agricultural Sciences and Technology, SKUAST-J, Chatha, J&K, 180009, India.
Plastic has become ubiquitous, as it is present in soil, air, fresh, and marine water environments. Microplastic (MPs) pollution has dramatically increased and is found in a range of terrestrial ecosystems, including Arctic and Antarctic. With their tenacity, adaptability, and long-lasting perseverance within the environment, MPs are pervasive and pose a worldwide environmental risk.
View Article and Find Full Text PDFAstrobiology
August 2025
International Centre for Terrestrial Antarctic Research, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, New Zealand.
The McMurdo Dry Valleys may harbor diverse surface microbial communities, yet little is known about subsurface microorganisms in permafrost and their potential for paleoecological reconstruction. Here, we present microbial diversity and paleoecology from lower Wright Valley (7000- to 25,000-year-old) and Pearse Valley (>180,000-year-old) permafrost habitats in the McMurdo Dry Valleys. Using a new decontamination protocol, low-biomass extraction approaches, and 16S ribosomal RNA gene amplification sequencing, we assessed microbial community structure and diversity.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:
The intrinsic conformational flexibility of proteins creates structural heterogeneity, giving rise to conformational ensembles within the energy landscape. When conformational ensembles harbor distinct functional sub-states, mutations can reshape the conformational landscape, thereby altering the distribution of functional sub-states and driving the evolution of novel functions. In this review, we provide a conceptual framework that elucidates the importance of functional sub-states and how evolution can select them.
View Article and Find Full Text PDFGenome Biol Evol
September 2025
Department of Natural History, NTNU University Museum, Trondheim 7012, Norway.
Studying adaptation to extreme climates is essential for understanding evolutionary processes and how species evolve and persist under changing environmental conditions, such as climate warming. Here, we investigate the genomic basis of adaptations in the Svalbard reindeer (Rangifer tarandus platyrhynchus), an endemic subspecies that colonized the High Arctic approximately 7,000 years ago and developed a suite of adaptations for survival under conditions of extreme cold, changes in day length, and resource scarcity. Applying scans of selection, functional analysis of coding region variation, and characterization of copy number variation across reindeer populations from Svalbard, mainland Norway, mainland Russia, and Novaya Zemlya, our comparative genomics approach identified 150 genomic regions that are differentiated in Svalbard reindeer relative to mainland reindeer (R.
View Article and Find Full Text PDF