Current and Emerging Technology for Continuous Glucose Monitoring.

Sensors (Basel)

Electrical Engineering Division, Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0FA, UK.

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes has become a leading cause of death worldwide. Although there is no cure for diabetes, blood glucose monitoring combined with appropriate medication can enhance treatment efficiency, alleviate the symptoms, as well as diminish the complications. For point-of-care purposes, continuous glucose monitoring (CGM) devices are considered to be the best candidates for diabetes therapy. This review focuses on current growth areas of CGM technologies, specifically focusing on subcutaneous implantable electrochemical glucose sensors. The superiority of CGM systems is introduced firstly, and then the strategies for fabrication of minimally-invasive and non-invasive CGM biosensors are discussed, respectively. Finally, we briefly outline the current status and future perspective for CGM systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298755PMC
http://dx.doi.org/10.3390/s17010182DOI Listing

Publication Analysis

Top Keywords

glucose monitoring
12
continuous glucose
8
cgm systems
8
cgm
5
current emerging
4
emerging technology
4
technology continuous
4
glucose
4
monitoring diabetes
4
diabetes leading
4

Similar Publications

Introduction: Genetic analysis is essential for diagnosing, treating, and predicting complications in neonatal diabetes mellitus (NDM) but is unavailable in some regions. Sulfonylureas are effective for NDM caused by KCNJ11 or ABCC8 mutations, which are among the most common genetic causes, therefore they are often given before genetic testing. Unfortunately, in certain ethnicities, this mutation rarely occurs.

View Article and Find Full Text PDF

Aims/hypothesis: Severe hypoglycaemia events (SHE) remain frequent in people with type 1 diabetes despite advanced diabetes technologies. We examined whether time below range (TBR) 3.9 mmol/l (70 mg/dl; TBR70) or 3.

View Article and Find Full Text PDF

The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.

View Article and Find Full Text PDF

Management of diabetes mellitus in hemodialysis is highly complex due to increased glycemic variability and hypoglycemic risk. The use of technologies applied to diabetes has been shown to improve glycemic control, however data in dialysis patients are limited. To describe the efficacy and safety of the minimed 780G AHCL system in a stable hemodialysis patient and during hospitalization in the Intensive Care Unit (ICU).

View Article and Find Full Text PDF

Noninvasive Monitoring of Blood Glucose With In Vivo Raman Spectroscopy.

J Biophotonics

September 2025

Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China.

Non-invasive glucose monitoring using Raman spectroscopy with 830 nm excitation presents a promising alternative to traditional fingerstick methods for diabetes management research. An integrated in vivo Raman system enables transcutaneous glucose detection and has demonstrated robust performance in oral glucose tolerance tests (OGTT), validating its reliability. Inter-subject correlation between spectral features and glucose concentration was addressed by the intensity of the fingerprint peak (I), peak intensity ratio (I/I), and the spectral area ratio (S/S), whose correlation coefficient (R) was 0.

View Article and Find Full Text PDF