98%
921
2 minutes
20
Purpose: Studies have shown that marker-less motion detection systems, such as the first generation Kinect (Kinect 1), have good reliability and potential for clinical application. Studies of the second generation Kinect (Kinect 2) have shown a large range of accuracy relative to balance and joint localization; however, few studies have investigated the validity and reliability of the Kinect 2 for upper extremity motion. This investigation compared reliability and validity among the Kinect 1, Kinect 2 and a video motion capture (VMC) system for upper extremity movements.
Design: One healthy, adult male performed six upper extremity movements during two separate sessions. All movements were recorded on the Kinect 1, Kinect 2 and VMC simultaneously. Data were analyzed using MATLAB (Natick, MA), Microsoft Excel (Redmond, WA), and SPSS (Armonk, NY).
Results: Results indicated good reliability for both Kinects within a day; results between days were inconclusive for both devices due to the inability to exactly repeat the desired movements. Range of motion (ROM) magnitudes for both Kinects were different from the VMC, yet patterns of motion were very highly correlated for both devices.
Conclusion: Simple transformations of Kinect data could bring magnitudes in line with those of the VMC, allowing the Kinects to be used in a clinical setting. Implications for Rehabilitation The clinical implications of the investigation support the notion that the Kinects could be used in the clinical setting if an understanding of their limitations exists. Using the Kinects to make assessments with a given data collection session is acceptable. Using the Kinects to make comparisons across different days such as before or after an intervention should be approached with caution. The Kinect 2 provides a more cost effective option compared to the VMC. Additionally, the Kinect is more portable, requires less time to set-up, and takes up less space, thus increasing its overall usability compared to the VMC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17483107.2016.1278473 | DOI Listing |
Eur J Case Rep Intern Med
July 2025
Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA.
Background: Thrombotic thrombocytopenic purpura (TTP) is a life-threatening hematologic emergency caused by ADAMTS13 deficiency, leading to microvascular thrombosis, haemolytic anaemia, thrombocytopenia, and end-organ damage. Neurological symptoms occur in up to 90% of cases and are frequently misdiagnosed as stroke. Prompt recognition and treatment reduce the mortality rate from over 90% to 10-20%.
View Article and Find Full Text PDFNeurol Res
September 2025
Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.
View Article and Find Full Text PDFArch Phys Med Rehabil
September 2025
Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China. Electronic address:
Objective: To identify baseline factors linked to a positive response to intermittent theta-burst stimulation (iTBS) in individuals with stroke.
Design: Secondary analysis of a randomized controlled trial.
Setting: A single rehabilitation hospital.
Ophthalmol Glaucoma
September 2025
Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, Michigan. Electronic address:
Purpose: To investigate hand function and eye drop instillation success in adults with and without glaucoma.
Design: Cross-sectional pilot study.
Subjects: Adults aged ≥ 65 years with glaucoma who use eye drops daily and adults aged 65+ without glaucoma who do not regularly use eye drops.
Biol Cybern
September 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 61801, IL, USA.
In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).
View Article and Find Full Text PDF