98%
921
2 minutes
20
Purpose: MRI of cortical bone has the potential to offer new information about fracture risk. Current methods are typically performed with 3D acquisitions, which suffer from long scan times and are generally limited to extremities. This work proposes using 2D UTE with half pulses for quantitatively mapping bound and pore water in cortical bone.
Methods: Half-pulse 2D UTE methods were implemented on a 3T Philips Achieva scanner using an optimized slice-select gradient waveform, with preparation pulses to selectively image bound or pore water. The 2D methods were quantitatively compared with previously implemented 3D methods in the tibia in five volunteers.
Results: The mean difference between bound and pore water concentration acquired from 3D and 2D sequences was 0.6 and 0.9 mol H/L (3 and 12%, respectively). While 2D pore water methods tended to slightly overestimate concentrations relative to 3D methods, differences were less than scan-rescan uncertainty and expected differences between healthy and fracture-prone bones.
Conclusion: Quantitative bound and pore water concentration mapping in cortical bone can be accelerated by 2 orders of magnitude using 2D protocols with optimized half-pulse excitation. Magn Reson Med 77:945-950, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526671 | PMC |
http://dx.doi.org/10.1002/mrm.26605 | DOI Listing |
Int J Biol Macromol
September 2025
Key Laboratory of Oil & Gas Fine Chemicals, School of Chemical Engineering, Xinjiang University, Urumqi, 830046, China.
With the acceleration of global industrialization, a large amount of polluted wastewater is discharged indiscriminately, which both pollutes the environment and threatens human health. In this study, by constructing a binary system of unsaturated polyester resin/carboxychitosan, and improving the inherent defects of carboxychitosan aerogel, we successfully prepared aerogels with high porosity, low density, and laminar porous structure for water remediation by using a combination of the sol-gel method and directional freezing technology. Thanks to the synergistic effect of surface wettability and special pore structure, the aerogel not only adsorbs and separates MB and Pb(II) efficiently with a separation efficiency of more than 99 %, but also has a separation efficiency of 99.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China. Electronic address:
Biomass containing inorganic ingredients can be converted into highly porous biochar via in-situ activation and templating process. Here, N-doped biochar is obtained by pyrolysis of spinach organs for efficient dye removal, using methylene blue (MB) as a model dye, and pyrolysis temperature plays a critical role in determining both porosity and N-species within biochar. Significantly, leaf biochar (LC-900) as pyrolyzed at 900 °C shows surface areas of 1263 m/g larger than that of biochar from stem and root, indicating a dependence on the biomass organ source.
View Article and Find Full Text PDFEnviron Res
September 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll
The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.
View Article and Find Full Text PDFSci Total Environ
September 2025
School of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China.
Biochar has emerged as a promising soil amendment for improving soil quality and mitigating environmental impacts, such as nutrient leaching. This study evaluated the impacts of ball-milled bamboo nano-biochar on water infiltration dynamics, retention capacity, and nitrogen‑phosphorus leaching in sandy loam soil using controlled column experiments and leaching experiments with five application doses alongside bulk biochar and untreated controls. Experimental results demonstrated that nano-biochar application significantly enhanced soil water retention capacity compared to the raw soil.
View Article and Find Full Text PDFEnviron Technol
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China.
The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.
View Article and Find Full Text PDF