Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Male grigs, bush crickets and crickets produce mating calls by tegminal stridulation: the scraping together of modified forewings functioning as sound generators. Bush crickets (Tettigoniidae) and crickets (Gryllinae) diverged some 240 million years ago, with each lineage developing unique characteristics in wing morphology and the associated mechanics of stridulation. The grigs (Prophalangopsidae), a relict lineage more closely related to bush crickets than to crickets, are believed to retain plesiomorphic features of wing morphology. The wing cells widely involved in sound production, such as the harp and mirror, are comparatively small, poorly delimited and/or partially filled with cross-veins. Such morphology is similarly observed in the earliest stridulating ensiferans, for which stridulatory mechanics remains poorly understood. The grigs, therefore, are of major importance to investigate the early evolutionary stages of tegminal stridulation, a critical innovation in the evolution of the Orthoptera. The aim of this study is to appreciate the degree of specialization on grig forewings, through identification of sound radiating areas and their properties. For well-grounded comparisons, homologies in wing venation (and associated areas) of grigs and bush crickets are re-evaluated. Then, using direct evidence, this study confirms the mirror cell, in association with two other areas (termed 'neck' and 'pre-mirror'), as the acoustic resonator in the grig Despite the use of largely symmetrical resonators, as found in field crickets, analogous features of stridulatory mechanics are observed between and bush crickets. Both morphology and function in grigs represents transitional stages between unspecialized forewings and derived conditions observed in modern species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.153106 | DOI Listing |