Publications by authors named "Benedict D Chivers"

In the olfactory literature there is considerable debate about how differences in olfactory receptors across different species map onto variations in perceptual acuity and performance. Although humans have fewer functional olfactory receptors than most other mammals, it has been suggested that linguistic and cognitive abilities help compensate for this apparent deficit and enhance discriminative abilities, particularly through humans' ability to categorize sensory stimuli into conceptual categories. However, previous research suggests that non-human animals can learn complex categories, involving multiple perceptual dimensions, indicating that they can discriminate complex odor stimuli without language.

View Article and Find Full Text PDF

The impacts of ear disease on animal welfare and behaviour are little documented. Ear disease may be common in rabbits, but difficult to recognise, and lop-ears have previously been indicated as a risk factor for ear disease. We aimed to better understand the range of ear conditions in pet rabbits, signalment risk factors, and impacts on welfare and behaviour.

View Article and Find Full Text PDF

Bush-crickets have dual-input, tympanal ears located in the tibia of their forelegs. The sound will first of all reach the external sides of the tympana, before arriving at the internal sides through the bush-cricket's ear canal, the acoustic trachea (AT), with a phase lapse and pressure gain. It has been shown that for many bush-crickets, the AT has an exponential horn-shaped morphology and function, producing a significant pressure gain above a certain cut-off frequency.

View Article and Find Full Text PDF

Bush-crickets (Orthoptera: Tettigoniidae) generate sound using tegminal stridulation. Signalling effectiveness is affected by the widely varying acoustic parameters of temporal pattern, frequency and spectral purity (tonality). During stridulation, frequency multiplication occurs as a scraper on one wing scrapes across a file of sclerotized teeth on the other.

View Article and Find Full Text PDF

The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discrimination from background noise and heterospecific calls. However, we present here evidence that two anurans, Brachycephalus ephippium and B.

View Article and Find Full Text PDF

Animals use sound for communication, with high-amplitude signals being selected for attracting mates or deterring rivals. High amplitudes are attained by employing primary resonators in sound-producing structures to amplify the signal (e.g.

View Article and Find Full Text PDF

Frequency analysis in the mammalian cochlea depends on the propagation of frequency information in the form of a travelling wave (TW) across tonotopically arranged auditory sensilla. TWs have been directly observed in the basilar papilla of birds and the ears of bush-crickets (Insecta: Orthoptera) and have also been indirectly inferred in the hearing organs of some reptiles and frogs. Existing experimental approaches to measure TW function in tetrapods and bush-crickets are inherently invasive, compromising the fine-scale mechanics of each system.

View Article and Find Full Text PDF

Male grigs, bush crickets and crickets produce mating calls by tegminal stridulation: the scraping together of modified forewings functioning as sound generators. Bush crickets (Tettigoniidae) and crickets (Gryllinae) diverged some 240 million years ago, with each lineage developing unique characteristics in wing morphology and the associated mechanics of stridulation. The grigs (Prophalangopsidae), a relict lineage more closely related to bush crickets than to crickets, are believed to retain plesiomorphic features of wing morphology.

View Article and Find Full Text PDF