Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Somatic DNA recombination, the hallmark of vertebrate adaptive immunity, has the potential to generate a vast diversity of antigen receptor sequences. How this diversity captures antigen specificity remains incompletely understood. In this study we use high throughput sequencing to compare the global changes in T cell receptor β chain complementarity determining region 3 (CDR3β) sequences following immunization with ovalbumin administered with complete Freund's adjuvant (CFA) or CFA alone.

Results: The CDR3β sequences were deconstructed into short stretches of overlapping contiguous amino acids. The motifs were ranked according to a one-dimensional Bayesian classifier score comparing their frequency in the repertoires of the two immunization classes. The top ranking motifs were selected and used to create feature vectors which were used to train a support vector machine. The support vector machine achieved high classification scores in a leave-one-out validation test reaching >90% in some cases.

Summary: The study describes a novel two-stage classification strategy combining a one-dimensional Bayesian classifier with a support vector machine. Using this approach we demonstrate that the frequency of a small number of linear motifs three amino acids in length can accurately identify a CD4 T cell response to ovalbumin against a background response to the complex mixture of antigens which characterize Complete Freund's Adjuvant.

Availability And Implementation: The sequence data is available at www.ncbi.nlm.nih.gov/sra/?term¼SRP075893 . The Decombinator package is available at github.com/innate2adaptive/Decombinator . The R package e1071 is available at the CRAN repository https://cran.r-project.org/web/packages/e1071/index.html .

Contact: b.chain@ucl.ac.uk.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860388PMC
http://dx.doi.org/10.1093/bioinformatics/btw771DOI Listing

Publication Analysis

Top Keywords

support vector
16
vector machine
16
cdr3β sequences
8
complete freund's
8
amino acids
8
one-dimensional bayesian
8
bayesian classifier
8
feature selection
4
selection dimensional
4
dimensional naïve
4

Similar Publications

Sustainable urban development requires actionable insights into the thermal consequences of land transformation. This study examines the impact of land use and land cover (LULC) changes on land surface temperature (LST) in Ho Chi Minh city, Vietnam, between 1998 and 2024. Using Google Earth Engine (GEE), three machine learning algorithms-random forest (RF), support vector machine (SVM), and classification and regression tree (CART)-were applied for LULC classification.

View Article and Find Full Text PDF

Machine learning based classification of imagined speech electroencephalogram data from the amplitude and phase spectrum of frequency domain EEG signal.

Biomed Phys Eng Express

September 2025

electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.

Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.

View Article and Find Full Text PDF

During the vaccine production through the chick embryo cultivation method, harmful cracks may occur from the perforation of a trocar on the eggshell, around the impact hole, leading to the failure of cultivation. To detect the perforative cracks, this study proposes a method based on acoustic responses. By stimulating the embryo eggs and collecting the acoustic signals, 7 characteristic values were extracted from the time and the frequency domains: The maximum value in the time domain; The difference in the time domain; The frequency-domain peaks, 870 Hz, 1250 Hz, 1470 Hz and 1770 Hz; The mean value of the waveform.

View Article and Find Full Text PDF

Radiomics nomogram from multiparametric magnetic resonance imaging for preoperative prediction of substantial lymphovascular space invasion in endometrial cancer.

Abdom Radiol (NY)

September 2025

Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.

Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.

View Article and Find Full Text PDF