98%
921
2 minutes
20
Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167736 | PMC |
http://dx.doi.org/10.3389/fnana.2016.00122 | DOI Listing |
Front Hum Neurosci
August 2025
Signal Processing Laboratory (LTS5), École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland.
Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.
Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.
Sci Adv
September 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, China.
The pyroelectric effect plays a critical role in thermal imaging and energy harvesting. Despite extensive efforts to enhance performance through doping and composite engineering, the mechanisms underlying defect dipole coupling with phase structures remain poorly understood, impeding the advancement of defect-engineered symmetry modulation. Here, we report an abnormal pyroelectric phenomenon where the pyroelectric coefficient () increases notably when poling temperature exceeds the orthorhombic-to-tetragonal phase transition temperature () in potassium sodium niobate ceramics.
View Article and Find Full Text PDFMov Disord
September 2025
Movement Investigation and Therapeutics Team, Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute, Paris, France.
Background: Cervical dystonia is characterized by abnormal neck and head movements, possibly related to a dysfunction of the interstitial nucleus of Cajal (INC) and the head neural integrator, a system responsible for the control of head and eye movements. However, neuroanatomical evidence of alterations in the head neural integrator in cervical dystonia is sparse.
Objectives: We investigated structural and functional integrity of the INC and its connections in cervical dystonia.
Diffusion MRI (dMRI) is a powerful tool to assess white matter (WM) microstructural abnormalities in Alzheimer's disease (AD). The fourth phase of the Alzheimer's Disease Neuroimaging Initiative (ADNI) now includes multiple multishell dMRI protocols, enabling both traditional and advanced dMRI model analyses. There is a need to evaluate whether multishell data offer deeper insights into WM pathology in AD than more widely available single-shell data by overcoming single-shell model limitations.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Q. Li, K. Zou, Prof. Y. Zhang, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing
Osteoarthritis is a chronic, degenerative, and disabling disease affecting over 500 million people worldwide, leading to significant medical costs. Monitoring changes in the biochemical components of synovial fluid is crucial for understanding the onset and progression of osteoarthritis. However, this remains a challenge because the volume of synovial fluid is low, synovial tissue is prone to inflammation after mechanical injury, joint movement is frequent, and the space is limited, which poses significant limitations for the sensor-tissue interface and the size of the device.
View Article and Find Full Text PDF