Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Traumatic brain injury (TBI) produces lasting neurological deficits that plague patients and physicians. To date, there is no effective method to combat the source of this problem. Here, we utilized a mild, closed head TBI model to determine the modulatory effects of a natural dietary compound, astaxanthin (AST). AST is centrally active following oral administration and is neuroprotective in experimental brain ischemia/stroke and subarachnoid hemorrhage (SAH) models. We examined the effects of oral AST on the long-term neurological functional recovery and histological outcomes following moderate TBI in a mice model.

Methods: Male adult ICR mice were divided into 3 groups: (1) Sham+olive oil vehicle treated, (2) TBI+olive oil vehicle treated, and (3) TBI+AST. The olive oil vehicle or AST were administered via oral gavage at scheduled time points. Closed head brain injury was applied using M.A. Flierl weight-drop method. NSS, Rotarod, ORT, and Y-maze were performed to test the behavioral or neurological outcome. The brain sections from the mice were stained with H&E and cresyl-violet to test the injured lesion volume and neuronal loss. Western blot analysis was performed to investigate the mechanisms of neuronal cell survival and neurological function improvement.

Results: AST administration improved the sensorimotor performance on the Neurological Severity Score (NSS) and rotarod test and enhanced cognitive function recovery in the object recognition test (ORT) and Y-maze test. Moreover, AST treatment reduced the lesion size and neuronal loss in the cortex compared with the vehicle-treated TBI group. AST also restored the levels of brain-derived neurotropic factor (BDNF), growth-associated protein-43 (GAP-43), synapsin, and synaptophysin (SYP) in the cerebral cortex, which indicates the promotion of neuronal survival and plasticity.

Conclusion: To the best of our knowledge, this is the first study to demonstrate the protective role and the underlining mechanism of AST in TBI. Based on these neuroprotective actions and considering its longstanding clinical use, AST should be considered for the clinical treatment of TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2016.12.031DOI Listing

Publication Analysis

Top Keywords

brain injury
12
oil vehicle
12
ast
9
traumatic brain
8
closed head
8
vehicle treated
8
nss rotarod
8
ort y-maze
8
neuronal loss
8
tbi
6

Similar Publications

Development of the SCI-BodyMap-Measuring Mental Body Representations in Adults With Spinal Cord Injury: Protocol for Item Generation, Reliability, and Validity Testing.

JMIR Res Protoc

September 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota-Twin Cities, Minneapolis, MN, United States.

Background: Approximately 69% of Americans with spinal cord injury (SCI) have neuropathic pain. Research suggests that impairments in mental body representations (MBRs; ie, representations of the body in the brain) likely contribute to neuropathic pain. Clinical trials in adults with SCI, focused on restoring MBR, led to improvements in sensation and movement as well as neuropathic pain relief.

View Article and Find Full Text PDF

Protective Role of Apelin in a Mouse Model of Post-Intensive Care Syndrome.

Am J Respir Cell Mol Biol

September 2025

University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.

Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.

View Article and Find Full Text PDF

Purpose: The aim of this study was to reach consensus among researchers, clinicians, and service managers on the most important outcomes of cognitive-communication treatments for children and adolescents (ages 5-18 years) with traumatic brain injury, in the postacute stage of rehabilitation and beyond.

Method: This is an international three-round e-Delphi study. In Round 1, participants answered three open-ended questions, generating important treatment outcomes at three stages of development (5-11, 12-15, and > 15-18 years).

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Clinical Efficacy of Stem Cell Therapy in Neurotraumatic and Neurodegenerative Conditions: A Comparative Review.

Tissue Eng Regen Med

September 2025

Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, South Korea.

Background: Neurotraumatic conditions, such as spinal cord injury, brain injury, and neurodegenerative conditions, such as amyotrophic lateral sclerosis, pose a challenge to the field of rehabilitation for its complexity and nuances in management. For decades, the use of cell therapy in treatment of neurorehabilitation conditions have been explored to complement the current, mainstay treatment options; however, a consensus for standardization of the cell therapy and its efficacy has not been reached in the medical community. This study aims to provide a comparative review on the very topic of cell therapy use in neurorehabilitation conditions in an attempt to bridge the gap in knowledge.

View Article and Find Full Text PDF