98%
921
2 minutes
20
The stochastic motions of a diffusing particle contain information concerning the particle's interactions with binding partners and with its local environment. However, an accurate determination of the underlying diffusive properties, beyond normal diffusion, has remained challenging when analyzing particle trajectories on an individual basis. Here, we introduce the maximum-likelihood estimator (MLE) for confined diffusion and fractional Brownian motion. We demonstrate that this MLE yields improved estimation over traditional mean-square displacement analyses. We also introduce a model selection scheme (that we call mleBIC) that classifies individual trajectories to a given diffusion mode. We demonstrate the statistical limitations of classification via mleBIC using simulated data. To overcome these limitations, we introduce a version of perturbation expectation-maximization (pEMv2), which simultaneously analyzes a collection of particle trajectories to uncover the system of interactions that give rise to unique normal and/or non-normal diffusive states within the population. We test and evaluate the performance of pEMv2 on various sets of simulated particle trajectories, which transition among several modes of normal and non-normal diffusion, highlighting the key considerations for employing this analysis methodology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.94.052412 | DOI Listing |
J R Soc Interface
September 2025
Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, Île-de-France, France.
A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up.
View Article and Find Full Text PDFChaos
September 2025
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.
View Article and Find Full Text PDFSmall
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
Adoptive cell transfers (ACTs) can interact specifically with inflamed tissues, but lack a mechanism for transport through viscous biological barriers such as mucus when administered locally. Further, maintaining cell function is challenging due to the loss of cellular phenotypes in diseased microenvironments. In this work, the use of magnetically controlled helical microrobots is examined to transport macrophages through physiologically representative mucus and maintain functional phenotypes through drug elution for improved cell delivery.
View Article and Find Full Text PDFChaos
September 2025
CeBio y Departamento de Ciencias Básicas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), CONICET, Roque Saenz Peña 456, Junin B6000, Argentina and Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil.
Studies regarding physical phenomena described by nonlinear Fokker-Planck equations usually consider the case where the drift forces acting on the physical system under investigation are derived from the gradient of a potential function. In the present manuscript, we investigate nonlinear Fokker-Planck equations, where the drift field has a component that is derived from the gradient of an asymmetric potential and another that corresponds to a nongradient force term. We consider the specific case of a two-dimensional, nonlinear Fokker-Planck equation where the drift field is obtained from an anisotropic, harmonic potential, besides the nongradient term.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany.
Understanding interactions between chiral active particles- self-propelling and self-rotating entities- is crucial for uncovering how chiral active matter self-organizes into dynamic structures. Although fluctuation-induced forces in nonequilibrium active systems can drive structure formation, the role of chirality remains largely unexplored. Effective fluctuation-induced forces between intruders immersed in chiral active fluids are investigated and revealing that the impact of chirality depends sensitively on particle shape.
View Article and Find Full Text PDF