Short communication: Early-lactation, but not mid-lactation, bovine lactoferrin preparation increases epithelial barrier integrity of Caco-2 cell layers.

J Dairy Sci

Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Private Bag 11008, Palmerston North, 4442, New Zealand; Riddet Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.

Published: February 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bovine lactoferrin is an important milk protein with many health-promoting properties, including improving intestinal barrier integrity. Dysfunction of this barrier, commonly referred to as "leaky gut," has been linked to inflammatory and autoimmune diseases. With some processing techniques, lactoferrin isolated from milk collected at the start of the milking season (early lactation) may have lower purity than that isolated from milk collected during the rest of the milking season (mid-lactation) and could result in differences in bioactivity based on the stage of lactation. We compared reversed-phase HPLC chromatographs of early-lactation and mid-lactation preparations and found that both had large chromatograph peaks at the time predicted for lactoferrin. The notable difference between the 2 chromatographs was a much larger peak in the early-lactation lactoferrin sample that was determined to be angiogenin. Angiogenin was first identified due to its ability to induce new blood vessel formation, but is now known to be involved in numerous physiological processes. Then, we compared the effects of early-lactation and mid-lactation lactoferrin preparations in 2 bioassays: trans-epithelial electrical resistance (TEER), a measure of intestinal barrier integrity, and peripheral blood mononuclear cell cytokine secretion, a measure of immune-stimulatory properties. We found that early-lactation lactoferrin increased TEER across Caco-2 cell layers compared with control from 10 to 48 h, mid-lactation lactoferrin did not alter TEER. We also found that early-lactation lactoferrin reduced the amount of IL-8 produced by peripheral blood mononuclear cells (compared with those treated with control medium) to a greater extent than mid-lactation lactoferrin. A pro-inflammatory chemokine, IL-8 is also known to decrease barrier function. These results suggest that the decrease in IL-8 production in the presence of early-lactation lactoferrin may be the mechanism by which it increases TEER. The anti-inflammatory effect of early-lactation lactoferrin may be related to the presence of angiogenin, which is known to suppress inflammatory responses. This work indicates that products rich in angiogenin may have intestinal health benefits, and further work to investigate this is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2016-11803DOI Listing

Publication Analysis

Top Keywords

early-lactation lactoferrin
20
early-lactation mid-lactation
12
lactoferrin
12
barrier integrity
12
mid-lactation lactoferrin
12
early-lactation
8
bovine lactoferrin
8
caco-2 cell
8
cell layers
8
intestinal barrier
8

Similar Publications

The primary objective of the study was to characterize concentrations and yields of lactoferrin (LF), insulin, and IGF-I in colostrum, transition milk (TM), and whole milk (WM) of multiparous (MP) and primiparous (PP) cows. A secondary objective was to determine associations between colostrum and TM components (fat, protein, lactose), IgG, and bioactive compounds (oligosaccharides, LF, insulin, IGF-I; defined as compounds present in micro quantities that stimulate physiological responses systemically or locally within the neonate). Holstein cows (10 MP and 10 PP) were assigned to the study at calving and colostrum was collected 5.

View Article and Find Full Text PDF

Development of a subacute ruminal acidosis risk score and its prediction using milk mid-infrared spectra in early-lactation cows.

J Dairy Sci

April 2021

Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, 37075 Goettingen, Germany; Center for Integrated Breeding Research, University of Goettingen, 37075 Goettingen, Germany.

A routine monitoring for subacute ruminal acidosis (SARA) on the individual level could support the minimization of economic losses and the ensuring of animal welfare in dairy cows. The objectives of this study were (1) to develop a SARA risk score (SRS) by combining information from different data acquisition systems to generate an integrative indicator trait, (2) the investigation of associations of the SRS with feed analysis data, blood characteristics, performance data, and milk composition, including the fatty acid (FA) profile, (3) the development of a milk mid-infrared (MIR) spectra-based prediction equation for this novel reference trait SRS, and (4) its application to an external data set consisting of MIR data of test day records to investigate the association between the MIR-based predictions of the SRS and the milk FA profile. The primary data set, which was used for the objectives (1) to (3), consisted of data collected from 10 commercial farms with a total of 100 Holstein cows in early lactation.

View Article and Find Full Text PDF

Variations in N-linked glycosylation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) whey protein: Intercow differences and dietary effects.

J Dairy Sci

April 2021

Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Sector Human Nutrition and Health, Laboratory Medicine, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, th

In bovine milk serum, the whey proteins with the highest N-glycan contribution are lactoferrin, IgG, and glycosylation-dependent cellular adhesion molecule 1 (GlyCAM-1); GlyCAM-1 is the dominant N-linked glycoprotein in bovine whey protein products. Whey proteins are base ingredients in a range of food products, including infant formulas. Glycan monosaccharide composition and variation thereof may affect functionality, such as the interaction of glycans with the immune system via recognition receptors.

View Article and Find Full Text PDF

Label-free quantitative proteomics analysis reveals the fate of colostrum proteins in the intestine of neonatal calves.

J Dairy Sci

November 2020

Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.

The contribution of intestinally absorbed colostral immunoglobulins to the transmission of passive immunity is widely reported in neonatal calves. However, changes in the colostral proteome in the gastrointestinal digesta remain unclear. Therefore, this study aimed to investigate changes in colostral proteome affected by gastrointestinal proteases in neonatal calves.

View Article and Find Full Text PDF

This study evaluated the concentration and expression of lactoferrin (LF) in cows selected for once a day (OAD) milking compared to twice a day (TAD) milking. Milk samples were collected from the Massey University TAD and OAD herds. Milk traits and expression of LF and insulin-like growth factor 1 (IGF-1) were analyzed with a general linear model that included the fixed effects of milking frequency, lactation number, interaction between milking frequency and lactation number, and as covariates proportion of F, heterosis F × J and deviation from the herd median calving date.

View Article and Find Full Text PDF