98%
921
2 minutes
20
Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204140 | PMC |
http://dx.doi.org/10.1098/rspb.2016.1289 | DOI Listing |
Nat Ecol Evol
September 2025
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
All plants and animals are host to a community of microorganisms, their microbiotas, which have crucial influences on the life history and performance of their hosts. Despite the importance of such host-microbiota relationships, relatively little is known about the role microbiotas have in mediating evolution of the host and entire host-microbe assemblages. This knowledge gap is partly due to the lack of theoretical frameworks that generate testable predictions on the evolutionary dynamics of host-microbiota systems.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Institute of Intelligent Machines, Chinese Academy of Science, Hefei, Anhui, P.R. China. Electronic address:
The convergence of artificial intelligence (AI) and wearable biosensors is revolutionizing personalized healthcare, enabling continuous monitoring, early detection of health issues, which enhances the efficiency of data processing and real-time decision-making. Multimodal Large Language Models (MLLMs) play a pivotal role in this ecosystem by offering advanced capabilities in analyzing complex health data, understanding nuanced health contexts, and generating tailored health recommendations instantaneously. This study provides insights into how machine learning, deep learning algorithms, and MLLM can work together to facilitate the analysis of physiologic data for real-time monitoring and early warning systems as well as complex decision support mechanisms.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Ecology and Environment, Anhui Normal University, Wuhu 241002, P. R. China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, P.R. China. Electronic address:
Trivalent antimony (Sb(III)) is listed as a priority aquatic contaminant due to its high toxicity. The oxidation of Sb(III) to pentavalent antimony (Sb(V)) and recovery is a desirable process for treatment of Sb-containing wastewater. Given the challenges of low cost and green production, researches on constructing an oxidation route in the absence of homogeneous oxidant for Sb oxidation and recovery are urgent.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.
View Article and Find Full Text PDF