98%
921
2 minutes
20
Background And Objective: Inconsistent results regarding an association between polymorphisms within the Homo sapiens nuclear receptor subfamily 1 group I member 2 (NR1I2) gene and susceptibility to inflammatory bowel disease (IBD) have been reported. A systematic review and meta-analysis was thus undertaken to determine whether NR1I2 gene polymorphisms are associated with an increased risk of IBD.
Methods: Article retrieval was performed using on-line databases, such as PubMed, Embase, CENTRAL, and WOS. After extracting eligible data, Mantel-Haenszel statistics were applied to calculate the odds radio (OR), 95% confidence interval (95% CI) and P value under a random or fixed-effects model.
Results: A total of seven articles with 4410 IBD subjects and 4028 controls were included. Compared with the control group, no significant increase in IBD susceptibility was observed for the -25385C/T (OR=0.92, 95% CI=0.78∼1.07, P=0.259), -24381A/C (OR=0.96, 95% CI=0.87∼1.06, P=0.378), +8055C/T (OR=1.06, 95% CI=0.97∼1.15, P=0.186), or +7635A/G (OR=0.96, 95% CI=0.87∼1.05, P=0.348) polymorphisms within the NR1I2 gene under the allele model.
Conclusions: Our meta-analysis failed to demonstrate an association between -25385C/T, -24381A/C, +8055C/T, or +7635A/G polymorphisms within the NR1I2 gene and overall IBD risk. A larger sample size is needed to validate our conclusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinre.2016.10.006 | DOI Listing |
Mol Divers
September 2025
Medical Biotechnology Laboratory (MedBiotech), Faculty of Medecine and Pharmacy of Rabat, Mohammed Vth University in Rabat, Rabat, Morocco.
Asthma is a chronic inflammatory disorder of the airways. Standard treatments, such as inhaled corticosteroids like fluticasone, beclomethasone, and budesonide, are effective in managing asthma symptoms by reducing inflammation through immune suppression. However, prolonged corticosteroid therapy can impair vitamin D metabolism, exacerbating vitamin D deficiency, which is essential for immune regulation and anti-inflammatory responses via the vitamin D receptor (VDR).
View Article and Find Full Text PDFPharmaceuticals (Basel)
August 2025
Plataforma Zebrafish of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil.
The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (, ) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (/) enhancing wound repair and - signaling fine-tuning inflammation; (3) proteolytic cascades (, ) coupled to autophagy (, ) and metabolic rewiring (- axis); and (4) melanogenesis-circadian networks (/-) linked to ubiquitin-mediated protein turnover.
View Article and Find Full Text PDFGenes (Basel)
July 2025
First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece.
Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies worldwide. Although chemotherapy is an effective treatment for colorectal cancer (CRC), its effectiveness is frequently hindered by the emergence of resistant cancer cells. Studies have demonstrated a linkage between drug resistance and the pregnane X receptor (PXR), which influences the metabolism and the transport of chemotherapeutic agents.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
The pregnane X receptor (PXR), a ligand-activated nuclear receptor, plays a central role in regulating the metabolism of both endogenous substances and xenobiotics. In recent years, increasing evidence has highlighted its involvement in chronic diseases, particularly metabolic disorders and cancer. PXR modulates drug-metabolizing enzymes, transporters, inflammatory factors, lipid metabolism, and immune-related pathways, contributing to the maintenance of hepatic-intestinal barrier homeostasis, energy metabolism, and inflammatory responses.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico.
Paraoxonase 1 (PON1) is an antioxidant enzyme that plays physio-pathological roles. Prior in silico analysis revealed the presence of response elements of the nuclear receptor superfamily in the promoter, comparable to glucocorticoid receptors (GR), the vitamin D receptor (VDR), and the pregnenolone X receptor (PXR). The aim of this study was to evaluate the effects of 1α,25-dihydroxyvitamin D, a ligand specific to VDR, on the expression and activity of PON1 in hepatocarcinoma cells (HepG2 cells).
View Article and Find Full Text PDF