Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retrotransposons are mobile genetic elements found in most organisms. Their origin and evolution is not very well understood. Retrotransposons that lack long terminal repeats (non-LTR) have been classified based on their reverse transcriptase (RT) and endonuclease sequences into groups, of which R2 is the most ancient. Its members contain a single open reading frame (ORF) while there are two ORFs in the other groups, of which ORF2 contains the RT and endonuclease sequences. It is thought that ORF1 was added later to the single-ORF-containing elements, and codes for a protein with nucleic acid binding activity. We have examined the non-LTR retrotransposons in Entamoeba histolytica, an early-branching parasitic protist, which belongs to the R2 group. However, unlike other members of R2, E. histolytica contains two ORFs. Here we show that EhLINE1-ORF1p is functionally related to the ORF1p found in the non-R2 groups. Its N-terminal region has RNA-binding activity and its C-terminal has a coiled coil domain which participates in protein-protein interaction. It lacks sequence-specificity of RNA-binding and binds to EhLINE1-RNA fragment and ribosomal RNA with comparable affinities. Our study suggests that ORF1p could have evolved independently to maintain functional conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2016.11.004DOI Listing

Publication Analysis

Top Keywords

protein-protein interaction
8
non-ltr retrotransposons
8
retrotransposons entamoeba
8
entamoeba histolytica
8
endonuclease sequences
8
functionally conserved
4
conserved rna-binding
4
rna-binding protein-protein
4
interaction properties
4
properties line-orf1p
4

Similar Publications

Accurately identifying associations between human genes (proteins) and clinical phenotypes is critical for advancing drug development and precision medicine. While the human phenotype ontology (HPO) standardizes clinical phenotypes, current computational approaches for predicting human protein-phenotype associations suffer from two limitations: (1) underutilization of multimodal protein-related information and (2) lack of state-of-the-art deep learning representations tailored to diverse data modalities, such as text and sequence. To overcome these limitations, we introduce MultiFusion2HPO, a novel multimodal model that integrates diverse features and advanced learning methods from multiple data sources to enhance the prediction of human protein-HPO associations.

View Article and Find Full Text PDF

Chromosome 8 Open Reading Frame 76 (C8orf76) Co-Expressed with Cyclin-Dependent Kinase 4 (CDK4) as a Prognostic Indicator of Colorectal Cancer.

Biomed Environ Sci

August 2025

Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China.

Objective: To explore the correlation between chromosome 8 open reading frame 76 (C8orf76) and cyclin-dependent kinase 4 (CDK4) and the potential predictive effect of C8orf76 and CDK4 on the prognosis of colorectal cancer (CRC).

Methods: We constructed a protein-protein interaction network of C8orf76-related genes and analyzed the prognostic signatures of C8orf76 and CDK4. Clinicopathological features of C8orf76 and CDK4 were visualized using a nomogram.

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.

Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.

View Article and Find Full Text PDF