Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Staphylococcus epidermidis is an opportunistic pathogen that can form robust biofilms that render the bacteria resistant to antibiotic action and immune responses. Intercellular adhesion in S. epidermidis biofilms is mediated by the cell wall-associated accumulation-associated protein (Aap), via zinc-mediated self-assembly of its B-repeat region. This region contains up to 17 nearly identical sequence repeats, with each repeat assumed to be functionally equivalent. However, Aap B-repeats exist as two subtypes, defined by a cluster of consensus or variant amino acids. These variable residues are positioned near the zinc-binding (and dimerization) site and the stability determinant for the B-repeat fold. We have characterized four B-repeat constructs to assess the functional relevance of the two Aap B-repeat subtypes. Analytical ultracentrifugation experiments demonstrated that constructs with the variant sequence show reduced or absent Zn-induced dimerization. Likewise, circular dichroism thermal denaturation experiments showed that the variant sequence could significantly stabilize the fold, depending on its location within the construct. Crystal structures of three of the constructs revealed that the side chains from the variant sequence form an extensive bonding network that can stabilize the fold. Furthermore, altered distribution of charged residues between consensus and variant sequences changes the electrostatic potential in the vicinity of the Zn-binding site, providing a mechanistic explanation for the loss of zinc-induced dimerization in the variant constructs. These data suggest an assembly code that defines preferred oligomerization modes of the B-repeat region of Aap and a slip-grip model for initial contact followed by firm intercellular adhesion during biofilm formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683732PMC
http://dx.doi.org/10.1042/BCJ20160675DOI Listing

Publication Analysis

Top Keywords

variant sequence
12
protein aap
8
assembly code
8
intercellular adhesion
8
b-repeat region
8
consensus variant
8
stabilize fold
8
b-repeat
6
variant
6
sequence
5

Similar Publications

Background: Genetic variation contributes to atrial fibrillation (AF), but its impact may vary with age. The Research Program contains whole-genome sequencing of data from 100 574 adult participants with linked electronic health records.

Methods: We assessed clinical, monogenic, and polygenic associations with AF in a cross-sectional analysis, stratified by age: <45 years (n=22 290), 45 to 60 years (n=26 805), and >60 years (n=51 659).

View Article and Find Full Text PDF

Degradation during production and delivery is a significant bottleneck in developing biomolecular therapies. Protein cages, formed by engineered variants of lumazine synthase, present an effective strategy for the microbial production and isolation of labile biomolecular therapies. Genetic fusion of the target polypeptide to a cage component protomer ensures its efficient encapsulation within the cage during production in host bacterial cells, thereby protecting it from degradation.

View Article and Find Full Text PDF

Dissecting the Causal Association Between Bulimia Nervosa and Structural Brain Abnormalities: A Two-Sample Bidirectional Mendelian Randomization Study.

Brain Behav

September 2025

The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.

Background: Diverse correlations between structural brain abnormalities and the clinical feature of bulimia nervosa (BN) have been identified in previous observational studies.

Objective: To explore the bidirectional causality between BN and brain structural magnetic resonance imaging (MRI) phenotypes.

Methods: Genome-wide association studies (GWAS) of 2441 participants identified genetic variants associated with disordered eating and predicted BN, whereas UK Biobank 3D-T1 MRI data were used to analyze brain structural phenotypes.

View Article and Find Full Text PDF

PATJ deficiency leads to cystic kidney disease and related ciliopathies.

HGG Adv

September 2025

Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany; Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany. Electronic address:

Cystic kidney disease and related ciliopathies are caused by pathogenic variants in genes that commonly result in ciliary dysfunction. For a substantial number of individuals affected by those cilia-related diseases, the causative gene still remains unknown. Using massively parallel sequencing, we here identified a pathogenic bi-allelic variant in the gene encoding PALS1-Associated Tight Junction Protein (PATJ; also known as Inactivation-No-Afterpotential D-Like, INADL) in an individual with ciliopathy.

View Article and Find Full Text PDF

Identification of a novel variant in gene in a patient with 46, XX disorders of sex development.

Gynecol Endocrinol

December 2025

National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.

Objective: To expand the clinical phenotype associated with MYRF mutations in disorders of sex development (DSDs).

Methods: We present a case of a 17-year-old patient with a female phenotype who presented with primary amenorrhea.

Results: The patient's external genitalia was entirely female in appearance, though there was no opening of vagina below the orifice of urethra.

View Article and Find Full Text PDF